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0 Executive Summary  

This is the second research report within work package two Reaction Techniques of the ACT5G 

project. The document provides information of the conducted and expected work of early-

stage researcher (ESR) three and four. The document first gives an overview of the focus area 

and research topics. Technical details of the work are then presented by means of research 

paper published or submitted since the previous research report. 
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1 Work Plan and Progress of ESR 3 

Emmanouil Fountoulakis, ESR 3, joined the project in August 15, 2016. His 

main research activities are the control and performance analysis of 5G net-

works. More specifically, Emmanouil is working on modelling and optimizing 

the latency under different network set ups. 

His main research direction includes optimization techniques (Lyapunov opti-

mization) for developing dynamic real time algorithms. Furthermore, for ana-

lysing the performance of the networks, Emmanouil applies tools from queue-

ing theory for deriving throughput and latency of the networks. Until May 

2018, Emmanouil had been focusing on delay sensitive applications using Lya-

punov optimization techniques for deriving dynamic algorithms. Under delay 

sensitive applications concept, he considered packets that are deadline con-

strained and are stored in a queue before transmission. The objective was the 

minimization of dropping rate under power consumption constraints. This 

work led to one conference paper accepted for publication in the IEEE 

GLOBECOM 2018 that will take place in December 2018. 

From May 2018 the ESR 3 has been working on a new topic related to Network 

Function Virtualization. In order to better understand this new concept of 5G, 

ESR 3 analyzed a small topology that consists of a set Mobile Edge Computing 

and Core servers that host different Virtual Network Functions. Theoretical and 

simulation results are derived by using tools from queueing theory. A confer-

ence paper is currently in progress and it is going to be submitted during Octo-

ber. After the submission, the plan is to use the results from the analysis in or-

der to optimize the performance of the system regarding to the end-to-end 

latency under the NFV concept for general network topologies.  
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2 Work Plan and Progress of ESR 4 

 

By the time of the previous research report, ESR 4, Özgür Umut Akgül, present-

ed a novel negotiation and trading platform in a multi-tenant network. The 

proposed resource market allows tenants to negotiate for resources according to 

their budget limits and utility expectations. The negotiation outcome is translat-

ed into sharing parameters in order to enable real-time resource scheduling in 

the shared infrastructure. Unlike the former studies in the literature, the pro-

posed framework allows tenants to renegotiate their sharing parameters after a 

predefined time window (i.e. in the order of seconds). This proposed model has 

been published in ICC 2017 conference. Following this first market definition, 

the ESR 4 proposed a dynamic network slicing algorithm which is built upon 

the model in ICC as an extension of the model. The framework has been im-

proved in order to accommodate the envisioned service heterogeneity in 5G. In 

this model, provided services are differentiated using a piece-wise linear utility 

function. This paper was presented in the IEEE Globecom 2017 conference. 

Spanning the time between the previous report and the current one, ESR 4's 

work has primarily focused on consolidating advantages of the proposed dy-

namic network slicing and short time scale trading framework within a large set 

of simulations. Another level of differentiation among tenants is achieved by al-

lowing tenants to choose their own time window in line with their strategies. 

More specifically, the renegotiation period is separated from the time windows 

of individual tenants and the tenants are allowed to differentiate their services 

via time window differentiation. Moreover, ESR 4 also implemented a simple 

prediction algorithm in order to enhance the framework's efficiency (both in 

terms of cost and spectrum). The analysis has proven that the proposed frame-

work provides fairness among both tenants and services and can improve the 

efficiency of the resource allocation by exploiting simple prediction mecha-

nisms. Despite the tenants share a common infrastructure, results have also 

demonstrated that it is possible for them to differentiate their services by tuning 

model parameters. It is also shown that the pricing model can allocate economic 

resources for capacity expansion and that this is crucial to keep infrastructure 

sharing convenient for tenants. The outcome of this study has been submitted 

to IEEE Transactions on Network and Service Management and currently on 

major review. 

The previous research has shown that having a prior knowledge of the upcom-

ing conditions can improve the performance of the slicing algorithm as high as 
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40%. Thus as the next step of his research, ESR 4 has focused on the anticipatory 

network slicing and trading, namely, using traffic and channel forecasting in 

order to improve the efficiency of the real time scheduler. Two candidate pre-

diction methods, i.e. Feed-Forward Neural Networks (FFNN) and Auto Regres-

sive Integrated Moving Average (ARIMA), are compared to be used in the trad-

ing framework. As a result of its low time complexity, high prediction accuracy 

and adaptation skill, ARIMA is used in the ongoing research. The prediction er-

rors have a direct impact on the efficiency of the proposed framework. Howev-

er, the prediction accuracy increases in parallel to the time complexity of the 

prediction algorithm. In order to enable the negotiation framework to be run in 

real time, a simple yet efficient model is required. With this objective in mind, 

ESR 4 defined a novel filtering approach that can exploit the advantages of pre-

diction while the prediction quality is high and can also filter out the prediction 

data when the accuracy is very low. The numerical analysis showed that appli-

cation of filter can decrease the tenants total cost while it also allows the infra-

structure provider to serve more tenants compared to no prediction scenario, 

using the same infrastructure. The outcome of this work has been submitted to 

IEEE International Conference on Communications (ICC) 2019. 

The ESR 4 is expected to complete his PhD studies by Spring 2019. The planned 

activities till the end of this period are to focus on extending the current work to 

include self-dimensioning and planning in sliced multi-tenant networks. 
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3 Appendices:  

- Dynamic power control for packets with deadlines (accepted by IEEE 

Globecom, 2018) 

- Dynamic resource trading in sliced Mobile networks (under revision for 

IEEE Transactions on Network and Service Management) 

- Anticipatory resource allocation and trading in a sliced network (submit-

ted to IEEE ICC, 2019) 
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Abstract—Wireless devices need to adapt their transmission
power according to the fluctuating wireless channel in order to
meet constraints of delay sensitive applications. In this paper, we
consider delay sensitivity in the form of strict packet deadlines
arriving in a transmission queue. Packets missing the deadline
while in the queue are dropped from the system. We aim at
minimizing the packet drop rate under average power con-
straints. We utilize tools from Lyapunov optimization to find an
approximate solution by selecting power allocation. We evaluate
the performance of the proposed algorithm and show that it
achieves the same performance in terms of packet drop rate
with that of the Earliest Deadline First (EDF) when the available
power is sufficient. However, our algorithm outperforms EDF
regarding the trade-off between packet drop rate and average
power consumption.

Index Terms—Deadline-constrained traffic, power efficient al-
gorithms, Lyapunov optimization, centralized scheduler, dynamic
algorithms.

I. INTRODUCTION

In many applications, data packets must be successfully
transmitted within a particular time frame, i.e., by some
deadline. If a packet is not transmitted before its deadline
expiration, then, its information is considered to be useless
and the packet is removed from the system [1]. This is
the case for a multitude of applications, such as multime-
dia streaming, online gaming, and the new 5G applications
such as autonomous driving that has strict round trip delay
constraint. With the pervasiveness of mobile communications,
such applications need to perform over wireless devices. In
wireless communications, transmission errors occur due to the
fluctuating nature of the channel. Assuming perfect channel
knowledge at the transmitter, the elimination of errors due
to fading can be achieved by increasing the transmission
power, for a given transmission rate. However, in many cases,
e.g., Internet of Things (IoT), power-limited wireless devices
require low average power consumption. Therefore, energy
efficiency issues become very important.

Delay constrained network optimization has been exten-
sively investigated and different optimization approaches have
been applied to different scenarios, refer to [2] and the ref-
erences therein. For deadline-constrained scheduling, Earliest
Deadline First (EDF) has been shown to be optimal in terms

This work has been supported by the European Unions Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 643002.

of number of served packets over error free (wired) channels
[3]. For the case of wireless fading channels (wireless com-
munications), the authors in [4] propose an optimal schedul-
ing scheme for single transmitter and receiver with energy
constraints by using a dynamic algorithm. Similar scenarios
have been studied in [5]–[7], where dynamic programming and
Markov decision theory are applied. Authors in [8] develop
a scheduling scheme that minimizes the number of dropped
packets transmitted over fading channels by using dynamic
programming. In addition, they assume that the deadlines of
the packets satisfy some particular requirements, i.e., the dead-
lines of subsequent packets depend on each other. Analytical
results are provided by the authors in [9] regarding on how
the power should be selected in order to approach deadlines.
Authors in [10], [11] consider deadline-constrained traffic and
decide on the channel or power allocation. In addition, authors
in [12] examine the impact of packet deadline on the age of
information for queing systems.

In this paper, we develop a dynamic algorithm that finds
an approximate solution to the problem of minimizing packet
drop rate by optimizing power allocation under average power
consumption constraints. The algorithm observes the channel
conditions and the remaining deadline of the users’ packets
and optimizes the power allocation without knowledge of
arrival packet statistics. We use Lyapunov drift and Lyapunov
optimization theory to develop a dynamic algorithm. The
proposed dynamic algorithm decides the power allocation at
each time slot by minimizing an upper bound on the drift-
plus-penalty expression. We compare the performance of our
algorithm with that of EDF. EDF searches across the users the
packet with the shortest expiration time and assigns to that user
the appropriate power. Numerical and simulation results show
that our scheduling scheme achieves the same performance
in terms of packet drop rate with that of EDF when the
available power is sufficient. Also, our dynamic algorithm
is able to satisfy the average power constraint. On the other
hand, EDF violates the average power consumption constraints
when the available power is not sufficient. In addition, our
dynamic algorithm offers a good trade-off between average
power consumption and packet drop rate.

II. SYSTEM MODEL

We consider N users transmitting packets to a single
receiver over wireless fading channels. Let N , {1, . . . , N}



be the set of the users in the system. Time is assumed to be
slotted. Let t ∈ Z be the tth slot. We consider the users to
be synchronized and at most one user can transmit at each
time slot. Each user i, where i ∈ N , is associated with a
queue where the packets are held or dropped. Let Qi(t) be
the number of packets in queue i in the tth slot. Each user
i generates a packet with a probability πi at each time slot
t. Let α(t) , {αi(t)}i∈N , where αi(t) ∈ {0, 1}, represent
the packet arrival process for each user i in the tth slot. The
random variables of packet arrival process are independent and
identically distributed (i.i.d.). Furthermore, we assume that at
most one packet can be transmitted at each time slot and no
collisions are allowed.

Each packet that arrives in a queue has a deadline by which
it must be transmitted. Otherwise, it is dropped and removed
from the system. For simplicity, the deadlines of the packets
in the same queue are assumed to be the same. However,
deadlines of different queues may vary. We denote the packet
deadline of the ith queue with mi ∈ Z+, ∀i ∈ N . We assume
that in each queue, packets are served in the order that they
arrive following the First In First Out (FIFO) discipline. Let
di(t) be the number of slots left in the tth slot before the packet
that is at the head of queue i expires.

We assume that the channel state at the beginning of
each time slot is known. The channel state remains con-
stant within one slot but it changes from slot to slot. Let
S(t) , {Si(t)}i∈N represent the channel state for each user
i during slot t. We assume that the channel can be either in
“Bad” state (deep fading) or in “Good” state (mild fading).
The possible channel states of each user i are described by
the set S , {B,G}, and Si(t) ∈ S , ∀i ∈ N . For simplicity,
we assume that the random variables of the channel process
S(t) are i.i.d. from one slot to the next.

Let p(t) , [p1(t), . . . , pN (t)] denote the power allocation
vector in the tth slot. We consider a set of discrete power levels{

0, P (Low), P (High)
}

. We assume that P (High) is needed for a
packet to be successfully transmitted under “Bad” channel
condition, and P (Low) under “Good” channel condition. At
each time slot, the set of selectable power levels Pi(t) for each
user is conditioned on the channel state Si(t). For example,
if the current channel state is “Bad”, then P (Low) cannot be
selected. Thus, we have

pi(t) ∈

{{
0, P (High)

}
, if Si(t) = B{

0, P (Low)
}

, if Si(t) = G
, ∀i ∈ N . (1)

Let µi(t) be the power allocation, or packet serving, indicator
for the user i in the tth slot, we have

µi(t) ,

{
1, if pi(t) > 0

0, otherwise
, ∀i ∈ N . (2)

At most one packet can be transmitted in a timeslot t, i.e.,
the vector p(t) has at most one non-zero element. The set of
power constraints for p(t) is then defined by

P(t) ,

{
p(t) :

N∑
i=1

1{µi(t)=1} ≤ 1

}
, (3)

where 1{·} denotes the indicator function.
In our system, a packet is dropped if its deadline has

expired. Since the queue follows FIFO discipline, a packet
is dropped under the following conditions: 1) it is at the head
of the queue; 2) the remaining number of the slots to serve the
packet is 1; and 3) power is not assigned to i at the current
slot. Let Di(t) be the indicator of the packet drop for user i
at time t. The queue evolution is described as

Qi(t+ 1) , max [Qi(t)− µi(t), 0] + αi(t)−Di(t), ∀i ∈ N .
(4)

Furthermore, we assume that Qi(0) = 0, and Di(0) = 0,
∀i ∈ N . Let

Di , lim
t→∞

Di(t), ∀i ∈ N , (5)

pi , lim
t→∞

pi(t), ∀i ∈ N , (6)

respectively denote the packet drop rate and the average

power consumption, where Di(t) = 1
t

t−1∑
τ=0

Di(τ) and pi(t) =

1
t

t−1∑
τ=0

pi(τ). The packet drop rate represents the average

number of dropped packets per time slot. The average power
consumption represents the average of transmit power over all
time slots. These metrics are connected and we will show in
the following sections how the average power consumption
affects the packet drop rate.

III. PROBLEM FORMULATION

We desire a scheduling scheme that offers fairness among
users when minimizing their packet drop rate under average
power constraints. Furthermore, we are interested in the trade-
off between packet drop rate and time average power consump-
tion. To this end, we present the following problem

min
p(t)

N∑
i=1

Di (7a)

s. t. pi ≤ γi, ∀i ∈ N , (7b)
p(t) ∈ P(t), (7c)

where γi ∈
[
0, P (High)

]
indicates the allowed average power

consumption. The constraint in (7b) ensures that average
power consumption of each user i remains below γi power
units.

The formulation above represents our intended goal which
is the minimization of the packet drop rate. However, the
objective function in (7a) has a basic disadvantage that makes
the solution approach non-trivial. The decision variable, p(t)
(power allocation), is optimized slot-by-slot for minimization
of the objective function that is defined over infinite horizon.
We have to cope with one critical point: We do not have any
knowledge about the future states of the channel and packet
arrival in the system. Therefore, we are not able to predict the
values of the objective function in the future slots in order to
decide on the power allocation that minimizes the cost. We
aim to design a function whose future values are affected by



TABLE I: Notation Table.

N Set of users in the system Pi(t) Set of selectable power levels of user i
t tth slot µi(t) Power allocation indicator of user i

Qi(t) Number of packets in queue i P(t) Set of power constraints for p(t)
πi Packet arrival probability of user i Di(t) Packet drop indicator of user i
αi(t) Packet arrival indicator of user i Di Packet drop rate of user i
mi Deadline of packet of user i pi Average power consumption of user i
di(t) Number of slots left before the deadline of user i Xi(t) Length of virtual queue of user i
S(t) Channel states L(·) Quadratic Lyapunov function
p(t) Power allocation vector ∆(L(·)) Lyapunov drift
γi Allowed average power consumption for user i α(t) Packet arrival indicator vector

the current decision and the remaining expiration time of the
packets. To this end, we introduce a function incorporating
the relative difference between the packet deadline mi and
the number of remaining future slots (di(t) − 1) before its
expiration as described below

fi(t) ,
mi − (di(t)− 1)

mi
1{µi(t)=0}. (8)

The function in (8) takes its extreme value fi(t) = 0 when a
packet of user i is served, or fi(t) = 1 when a packet of user
i is dropped. Therefore, that function takes the same values
with those of (5) in the extreme cases. In addition, the function
in (8) assigns the cost according to the remaining time of a
packet to expire in the intermediate states, i.e., when a packet
is waiting in the queue. The cost increases when there is less
time left for serving the packet with respect to the defined
deadline. The time average of fi(t) is

fi , lim
t→∞

f i(t), (9)

where f i(t) ,
1
t

t−1∑
τ=0

fi(τ). Finally, we formulate a minimiza-

tion problem by using (9) as shown below

min
p(t)

N∑
i=1

f i (10a)

s. t. pi ≤ γi, ∀i ∈ N , (10b)
p(t) ∈ P(t). (10c)

IV. PROPOSED APPROXIMATE SOLUTION

The problem in (10) includes time average constraints. In
order to satisfy these constraints, we aim to develop a policy
that uses techniques different from classic optimization meth-
ods based on static and deterministic models. For example,
policies that select power less than γi at every time slot
ensures that constraint (10b) is satisfied. However, this kind of
policies decrease the degrees of freedom of power selection. In
Table II, we provide an illustrative example with one user. We
consider that P (Low) = 1 power units, and P (High) = 2 power
units. In this example, the average power consumption must
be less than or equal to 1.5 power units, i.e., γ = 1.5 power
units (subscripts are omitted for simplicity). We compare the
performance of two policies ω1 and ω2. Policy ω1 selects
power less than γ power units at every time slot in order to

t = 1 t = 2 t = 3
S(t) = B S(t) = G S(t) = G

d(t)
ω1 1 2 empty queue
ω2 1 2 1

p(t)
ω1 0 1 0
ω2 2 0 1

p(t) drop packets

p(t)
ω1 1 1
ω2 1.5 0

TABLE II: Example showing the gain achieved by deciding
different power allocations.

restrict the average power consumption below 1.5 power units.
On the other hand, ω2 allows power selection greater than 1.5
power units for each time slot. We observe that policy ω2

achieves better performance than ω1 by satisfying the power
constraint. This motivates us to look for a more efficient way
to satisfy the average power consumption constraint.

We apply the technique developed in [13] and further
discussed in [14] and [15] in order to develop a policy that
ensures that the constraint in (10b) is satisfied. Each inequality
constraint in (10b) is mapped to a virtual queue. We show
below that the power constraint problem is transformed into a
queue stability problem.

Let {Xi(t)}i∈N be the virtual queues associated with con-
straint (10b). We update each virtual queue i at each time slot
t as

Xi(t+ 1) , max [Xi(t)− γi, 0] + pi(t). (11)

Process Xi(t) can be viewed as a queue with “arrivals” pi(t)
and “service rate” γi.

Before describing the motivation behind the mapping of
power constraints to virtual queues, let us recall one basic
theorem that comes from the general theory of stability of
stochastic processes [16]. Consider a system with K queues.
The number of unfinished jobs of queue i are denoted by
qi(t) and q(t) = {qi(t)}Kk=1. The Lyapunov function and the
Lyapunov drift are denoted by L(q(t)) and ∆(L(q(t))) ,
E {L(q(t+ 1))− L(q(t))|q(t)} respectively [16]. Before de-
scribing the Lyapunov Drift theorem, let us recall the definition
of the Lyapunov function [16].

Definition 1 (Lyapunov function): A function L : RK →
R is said to be a Lyapunov function if it has the following
properties



• L(x) ≥ 0, ∀x ∈ RK ,
• It is non-decreasing in any of its arguments,
• L(x)→ +∞, as ||x|| → +∞.
Theorem 1 (Lyapunov Drift): If there are positive values

B, ε such that for all time slots t we have ∆(L(q(t)) ≤

B − ε
K∑
k=1

qn(t), then the system q(t) is strongly stable.

In below, we show that the power constraint problem is
transformed into a queue stability problem. Then, we develop a
dynamic algorithm that satisfies Theorem 1 in order to achieve
stability.

Theorem 2: If Xi(t) is rate stable1, then the constraint in
(10b) is satisfied.

Proof. Using the basic sample property [14, Lemma 2.1,
Chapter 2], we have

Xi(t)

t
− Xi(0)

t
≥ 1

t

t−1∑
τ=0

pi(τ)− 1

t

t−1∑
τ=0

γi. (12)

Therefore, if Xi(t) is rate stable, so that Xi(t)
t → 0, ∀i, with

probability 1, then constraint (10b) is satisfied with probability
1 [17].

Note that strong stability implies all of the other forms of
stability [14, Chapter 2] including the rate stability. Therefore,
the problem is transformed into a queue stability problem. In
order to stabilize the virtual queues Xi(t), ∀i ∈ N , we first
define our Lyapunov function as

L(X(t)) ,
1

2

N∑
i=1

Xi(t)
2, (13)

where X(t) = {Xi(t)}i∈N and the Lyapunov drift as

∆(X(t)) , E {L(X(t+ 1))− L(X(t))|X(t)} . (14)

The above conditional expectation is with respect to the
random channel states and the arrivals.

To minimize the time average of the desired cost fi(t) while
stabilizing the virtual queues Xi(t), ∀i ∈ N , we use the drift-
plus-penalty minimization approach introduced in [15]. The
approach seeks to minimize an upper bound on the following
drift-plus-penalty expression at every slot t:

∆(X(t)) + V
∑
i∈N

E {fi(t)|X(t)} , (15)

where V > 0 is an “importance” weight to scale the penalty.
We derive an upper bound for the drift by using the fact

(max [Q− b, 0] +A)2 ≤ Q2 +A2 + b2 + 2Q(A− b) as shown
below

Xi(t+ 1)2 ≤ Xi(t)
2 + p2i (t) + 2Xi(t)(pi(t)− γi) + γ2i .

(16)

1A discrete time process Q(t) is rate stable if lim
t→∞

Q(t)
t

= 0 with
probability 1 [14].

Taking the sum over all the queues in (16) we have

N∑
i=1

Xi(t+ 1)2

2
−

N∑
i=1

Xi(t)
2

2
≤

N∑
i=1

Xi(t)
2 + pi(t)

2 + γ2
i

2

+

N∑
i=1

Xi(t)(pi(t)− γi). (17)

Taking the expectations in (17), we have

∆(X(t)) ≤ B +

N∑
i=1

Xi(t)E {yi(t)|X(t)} , (18)

where yi(t) = pi(t)− γi, and B is constant,

B ≥ 1

2

N∑
i=1

E
{
Xi(t)

2 + pi(t)
2 + γ2i |X(t)

}
. (19)

Therefore, an upper bound for the drift plus penalty expression
is

∆(X(t)) + V

N∑
i=1

E {fi(t)|X(t)}

≤ B +

N∑
i=1

Xi(t)E {yi(t)|X(t)}+ V

N∑
i=1

E {fi(t)|X(t)} . (20)

A. Min-Drift-Plus-Penalty Algorithm

Note that the power allocation decision on slot t affects only
the last two terms in (20). The proposed algorithm observes
the virtual queue backlogs X(t) and the channel states and
makes a control action to minimize the following expression

N∑
i=1

Xi(t)E {yi(t)|X(t)}+ V

N∑
i=1

E {fi(t)|X(t)} . (21)

The algorithm decides the power allocation by solving the
following optimization problem at each time slot

min
p(t)

V

N∑
i=1

fi(t) +

N∑
i=1

Xi(t)yi(t) (22a)

p(t) ∈ P(t). (22b)

In the following we show that the optimal solution to
problem (22) minimizes the upper bound of the drift-plus-
penalty expression given in the right-hand-side of (20). Let
p(t) represent any, possibly randomized, power allocation
decision made at slot t. Suppose that p∗(t) is the optimal
solution to problem (22), and under action p∗(t) the value of
fi(t) yields f∗i (t), and that of yi(t), y∗(t), we have

V

N∑
i=1

f∗i (t) +

N∑
i=1

Xi(t)y
∗
i (t) ≤ V

N∑
i=1

fi(t) +

N∑
i=1

Xi(t)yi(t).

(23)



Taking the conditional expectations of (23), we have

V

N∑
i=1

E {f∗i (t)|X(t)}+

N∑
i=1

Xi(t)E {y∗i (t)|X(t)} ≤

V

N∑
i=1

E {fi(t)|X(t)}+

N∑
i=1

Xi(t)E {yi(t)|X(t)} . (24)

In view of the above, it is concluded that the optimal solution
to problem (22) minimizes the upper bound given in the right-
hand-side of (20). Note that the solution we provide is an
approximate solution because we minimize an upper bound of
the drift defined in (20). Furthermore, we find an approximate
solution of the problem in (10) by solving a snapshot problem
(22) for a particular time slot t.

We summarize the steps of the proposed dynamic control
algorithm to solve problem (10) in Algorithm 1, named dy-
namic power allocation (DPA) algorithm. DPA uses exhaustive
search that solves the problem in (22).

Algorithm 1: DPA
1 Input constant V , Initialization Xi(0) = 0, γi, ∀i ∈ N
2 for t = 1 : . . . do
3 MinObj ←∞
4 for i ∈ N do
5 pi(t) ∈ P(t), Calculate fj(t), ∀j ∈ N

6 Obj ← V
N∑

j=1
fj(t) +

N∑
j=1

Xj(t)yj(t)

7 if MinObj>Obj then
8 p′(t)← p(t)
9 MinObj ← Obj

10 p(t)← p′(t)
11 Xj(t+ 1)← max [Xj(t)− γj , 0] + pj(t), ∀j ∈ N

In step 1, we initialize V and the length of virtual queues.
We calculate the value of the objective function for each
possible value of vector p(t) as shown in steps 5–6. In step
7, we compare each possible value of the objective function
(for different power allocations) and keep the corresponding
power allocation in vector p′(t) as shown in step 8. We decide
power allocation as shown in step 10. The complexity of DPA
is O(N2).

V. NUMERICAL AND SIMULATION RESULTS

In this section, we compare the performance of DPA with
that of earlier deadline first (EDF) algorithm. Recall that EDF
finds across the users the packet with the shortest remaining
expiration time and it assigns to its user the appropriate
power according to the channel conditions. We compare the
performance of the algorithms in terms of packet drop rate
and average power consumption and we show the trade-off
between them. Additionally, we provide results showing the
performance of our algorithm for different values of V and
how they affect the average power consumption.

In the simulation setup, the probability a channel to be in
“Bad” and “Good” state is 0.6 and 0.4, respectively. Also,
we consider that the arrival process for each user i is an i.i.d.
Bernoulli process with probability λi. In addition, we consider
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Fig. 1: DPA performance depending on V . γ1 = γ2 = 0.6,
λ1 = λ2 = 0.4.

that P (Low) = 1, and P (High) = 2. The deadlines are m1 =
m2 = 5 time slots.

Fig. 1 depicts how different values of V affect the packet
drop rate and the average power consumption of user 1. We
observe that the larger the value of V the slower the conver-
gence of the algorithm in terms of power rate consumption
constraint. However, it is shown in Fig. 1a that even for large
values of V , DPA is able to keep the power rate consumption
below γi and, therefore to satisfy the power consumption
constraint. For large values of V , DPA allows virtual queue
backlogs to take large values as shown in Fig. 1b. The reason
why the backlogs of the virtual queues increase is because
the dominant term of the objective function is the one that
includes V . However, as the time passes by the virtual queue
backlog increases and dominates the penalty term that includes
V . Thus, DPA allocates lower power in order to decrease the
virtual queue backlog and stabilizes it as shown in Fig. 1b. In
Fig. 1c, we provide results for different values of V . We show
the trade-off between the average power consumption and the
packet drop rate. As expected, the average power consumption
increases with increasing value of V . However, the average
power consumption is always below 0.6.

Values of V that are larger than 60 do not affect significantly
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Fig. 3: Average power consumption for EDF and DPA for
different values of λi and γi.

the packet drop rate. Thus we present the rest of the simulation
results for V = 60. In Fig. 2 and Fig. 3, we compare the
performance of the two algorithms in terms of packet drop
rate and average power consumption. Note that EDF does not
take into account the average power consumption of each user.
Therefore, for some values of γi, EDF algorithm violates the
average power constraints. For example, we see in Fig. 3 that
EDF algorithm violates the average power constraints for γ1 =
γ2 = 0.7. The performance of DPA in terms of packet drop
rate is very close to that of EDF. However, we observe in Fig.
3, the average power consumption of DPA is lower than that of
EDF by 0.1 power units. For γ1 = γ2 = 0.8, we observe that
our algorithm has the same performance in terms of packet
drop rate with that of EDF. However, in Fig. 3, we see that
the average power consumption of DPA decreases when the
traffic arrival exceeds a sufficiently large value, i.e., for λ1 =
λ2 > 0.6. The reason why the average power consumption
decreases is because that for large values of λi, the scheduler
has often to cope with users having packets with one time slot
left before their expiration. Thus, it selects to assign power to
the user who has the best channel condition and drops the
packet of the user with the worst channel condition.

Overall, we observe that our algorithm performs as the
EDF algorithm when the power limit is sufficiently high.
Furthermore, the proposed algorithm is able to satisfy the
average power constraints of the users and offer a good trade-
off between packet drop rate and average power consumption
as shown in Fig. 2 and Fig. 3.

VI. CONCLUSIONS

In this paper, we propose a dynamic algorithm that decides
power allocation at each time slot by minimizing an objective
function. The proposed algorithm is based on Lyapunov opti-
mization theory. We evaluate the performance of the proposed
algorithm through simulations and compare it with EDF. We
observe that our proposed algorithm has the same performance
with EDF in terms of packet drop rate when the available
power is sufficient. Furthermore, the proposed scheduling
scheme can handle packets with deadlines and control the
transmission power of the devices. Since we have systems
with mobile devices and therefore, limited available power, it
is important to develop a dynamic algorithm that satisfies the
average power constraints of each user.

REFERENCES

[1] I.-H. Hou and P. R. Kumar, “Packets with deadlines: A framework
for real-time wireless networks,” Synthesis Lectures on Communication
Networks, vol. 6, no. 1, pp. 1–116, 2013.

[2] Y. Cui, V. K. N. Lau, R. Wang, H. Huang, and M. Shunqing Zhang,
“A survey on delay-aware resource control for wireless systems–large
deviation theory, stochastic lyapunov drift, and distributed stochastic
learning,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1677–1701, Mar.
2012.

[3] L. Georgiadis, R. Guerin, and A. Parekh, “Optimal multiplexing on a
single link: Delay and buffer requirements,” IEEE Trans. Inf. Theory,
vol. 43, no. 5, pp. 1518–1535, Sept. 1997.

[4] A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission schedul-
ing over a fading channel with energy and deadline constraints,” IEEE
Trans. Wireless Commun., vol. 5, no. 3, pp. 630–641, Mar. 2006.

[5] M. Goyal, A. Kumar, and V. Sharma, “Power constrained and delay
optimal policies for scheduling transmission over a fading channel,” in
Proc. IEEE INFOCOM, vol. 1, May 2003, pp. 311–320.

[6] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “An on-line
learning algorithm for energy efficient delay constrained scheduling over
a fading channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 732–
742, May 2008.

[7] A. E. Gamal, E. Uysal, and B. Prabhakar, “Energy-efficient transmis-
sion over a wireless link via lazy packet scheduling,” in Proc. IEEE
INFOCOM, vol. 1, 2001, pp. 386–394.

[8] A. Dua and N. Bambos, “Downlink wireless packet scheduling with
deadlines,” IEEE Trans. Mobile Comput., vol. 6, no. 12, pp. 1410–1425,
Dec. 2007.

[9] N. Master and N. Bambos, “Power control for packet streaming with
head-of-line deadlines,” Performance Evaluation, vol. 106, pp. 1 – 18,
2016.

[10] E. Fountoulakis, N. Pappas, Q. Liao, V. Suryaprakash, and D. Yuan, “An
examination of the benefits of scalable TTI for heterogeneous traffic
management in 5G networks,” in Proc. IEEE WiOpt, May 2017, pp.
1–6.

[11] A. Ewaisha and C. Tepedelenlioglu, “Power control and scheduling
under hard deadline constraints for on-off fading channels,” in Proc.
IEEE WCNC, March 2017, pp. 1–6.

[12] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “On the age of information with packet deadlines,” IEEE
Trans. Inf. Theory, 2018.

[13] M. J. Neely, “Energy optimal control for time-varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934, July
2006.

[14] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[15] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, no. 1, 2006.

[16] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
2nd ed. New York, NY, USA: Cambridge University Press, 2010.

[17] M. J. Neely, “Queue Stability and Probability 1 Convergence
via Lyapunov Optimization,” ArXiv e-prints, Aug. 2010. [Online].
Available: https://arxiv.org/abs/1008.3519



1

Dynamic Resource Trading in Sliced Mobile
Networks

Özgür Umut Akgül, Ilaria Malanchini, and Antonio Capone

Abstract—Expanding the market of mobile network services
and defining solutions that are cost efficient are the key challenges
for next generation mobile networks. Network slicing is com-
monly considered the main instrument to exploit the flexibility
of the new radio interface and core network functions in order
to split resources among services with different requirements
and tailor system parameters according to their needs. However,
network slicing tends to be viewed by regulation authorities also
as a way to open the market to new players that can specialize in
providing new mobile services acting as “tenants” of the slices.
Resources can be traded between infrastructure providers and
tenants so as to match the requirements of the services offered.
In this paper, we propose a model for mobile network resources
that allows dynamic trading in a market that can automatically
optimize technical parameters and economic prices according to
high level policies set by the tenants. We introduce a mathematical
formulation of the resource allocation and price setting problem
and show how the proposed approach can cope with quite diverse
service scenarios presenting a large set of numerical results.

Index Terms—Network slicing, infrastructure sharing, wireless
market, pricing mechanism, dynamic resource sharing, mobile
virtual network operators (MVNO)

I. INTRODUCTION

THE traditional business model of mobile networks is
centered on operators that acquire licenses for spectrum

use, build their own infrastructure, and control the resource
allocation according to their needs. This model is currently
being challenged by a number of economic, regulatory, and
technical issues that are expected to change the mobile land-
scape in the near future.

The first well known issue is the exponential mobile traffic
increase (cf. [1]) that is pushing operators to rapidly expand
the capacity of their network with technology upgrades, cov-
erage densification, and spectrum refarming. Unfortunately,
the average revenues per user are not growing with the same
pace of traffic (in some countries are even reducing), and the
number of traditional users can no longer be increased. This is
leading to an aggressive cost optimization and reduction that
is however not sustainable in the long run. A possible way
out has been identified in the evolution of the technology to
support a much larger set of applications in addition to the
traditional mobile broadband so as not only to expand the
market but also to use once more the network infrastructure
to stimulate the growth of the digital economy.

In the last years the focus of research first and then stan-
dardization on 5G networks has exactly been that of shaping

Ö. U. Akgül and A. Capone are with Dipartimento di Elettronica, Infor-
mazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy.

I. Malanchini is with Nokia Bell Labs, Stuttgart, Germany

a new technology not only able to improve the performance
of previous ones, but also to support a wide range of vertical
applications with very diverse and stringent requirements in
terms of throughput, delay, reliability and energy [2]. How-
ever, because of fundamental technical limits, pushing to the
extreme the performance on all these indicators simultaneously
is not possible, and the network must be optimized on different
working points depending on the specific application domain.
The concept of network slicing has been introduced with the
goal of allowing resource allocation to different applications
and traffic classes so as to meet different quality requirements
[3].

Even if slicing can be seen as a precious instrument
for operators to manage their new generation networks, it
nevertheless poses new challenges. A straightforward way
of allocating resources to different slices can be through a
(almost) static partitioning, which however can lead to low
efficiency. Dynamic resource allocation can be a solution, but
it must accurately consider traffic evolution and performance
constraints of all applications. Moreover, the possibility to
slice the network makes rather natural to consider new players,
known as tenants with 5G terminology, that act as slice
operators acquiring resources from traditional operators that
tend to become infrastructure providers. From a regulatory
perspective, the possibility to use slicing as a tool for in-
frastructure sharing is considered a way for creating new
market opportunities and even explore new spectrum licensing
strategies.

Generally speaking, the idea of infrastructure sharing among
multiple mobile virtual operators has a relatively long history.
Among the alternative sharing approaches listed by the Organi-
zation for Economic Co-operation and Development (OECD)
report, active sharing is considered to be most cost-efficient
sharing approach [4]. The active sharing includes sharing of
both active network elements and spectrum resources. Virtual
operators can then share resources with other operators and
decrease costs [5]. Although a number of different sharing
scenarios exist, the most common one includes a single
infrastructure provider and a set of mobile virtual network
operators that acquire resources in order to serve their users.
For a given quality level, sharing allows saving resources with
respect to the scenario of separate physical networks. The
increased efficiency in resource usage and the adaptability to
traffic conditions, are clear advantages [6] [7].

Most of proposed sharing models rely on pre-negotiated
service level agreements (SLAs) that regulates responsibilities
of each party and the fraction of resources to be assigned.
Obviously, long term agreement with static resource assign-
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ments are not able to follow the fluctuations in the network
demand [8]. Moreover, in wireless networks, there are some
geographical areas that are not profitable for the virtual opera-
tors but still need to be covered by the infrastructure provider
and associated costs are hard to be mapped into SLAs. For
these reasons, dynamic sharing of infrastructure resources is a
more attractive alternative where virtual operators or tenants
can negotiate resource allocation based on needs following
traffic and channel fluctuations [5] [9]. As argued in [7], the
opportunity to dynamically adjust resource allocated, gives
operators the possibility to take more business risks and thus, a
dynamically shared wireless market tends to foster innovation.
In this context, however, providing quality guarantees with
heterogeneous traffic and different performance parameters is
still an open problem that need to be addressed in order to
apply infrastructure sharing to network slicing scenarios.

Unlike infrastructure sharing, network slicing is a relatively
new concept. Despite the commonly accepted definition of
vertically grouped network resources, the specific negotiable
attributes of each slice and the instruments for service dif-
ferentiation are still under discussion in the literature and
standardization bodies. In this work, we adopt the concept
of a slice as a set of dedicated network resources assigned
for specific services in a time interval. In order to assign
resources to slices efficiently, the channel conditions, traffic
characteristics and variations, and service heterogeneity must
be considered [10]. The benefits of network slicing are inves-
tigated in [11]–[13] considering static SLAs without dynamic
resource adaptation. A virtualization framework, where the
resources are scaled according to tenants’ dynamic needs
and fairness is guaranteed not only between tenants, but
also between users of different services is proposed in [14].
The model however does not consider adaptation to channel
conditions and economic aspects of resource trading. In [15],
we have proposed a first step towards dynamic network slicing
in a shared network where tenants are able to renegotiate their
slice sizes. In our proposed scheme, tenants retain service
level guarantees, but they can trade resources on a very short
time scale so as to exploit fluctuations in traffic and channel
condition and efficiently control costs.

An important element for tenants and their business strate-
gies (i.e. making long term plans, analyzing the possible risks
and performing innovation) is a reasonable and predictable
pricing model [7]. In the conventional network provisioning
model, the infrastructure provider (whether it is a local opera-
tor or a specialized entity) charges tenants according to costs
associated to its long-term infrastructure strategy, which may
not always be in line with their market and even not able to
meet requests for all tenants [16]. More in general, the pricing
model of infrastructure providers can create barriers for the
entrance of new players, as already shown for the traditional
mobile virtual operator approach [17]. The structure of the
competition on a geographical distributed resource tends to
favor a small number of big operators [18], eventually leading
to a monopoly that can slow down innovation [7]. However,
with dynamic infrastructure sharing, since the resources are
pooled and tenants can adjust their shares dynamically, a
more efficient and neutral pricing framework can be potentially

achieved [19].
A reasonable approach is that of using variable market

driven prices and allowing tenants trading the resources to
acquire on a short time scale based on needs and current prices.
Unfortunately, without a clear model that allows to understand
the relation of economic aspects with technical performance,
it is unlikely that tenants can exploit the full potential of the
dynamic sharing. Thus, a scheme able to automatically define
prices and resource allocation based on high level tenant strate-
gies and traffic estimation is of fundamental importance [8].
Even if there is a quite large literature focused on the economic
aspects (such as [17], [20]) and technical aspects (such as [21],
[22]) separately, the definition of techno-economic models for
resource sharing in sliced networks is still an open point.

In this paper, we propose a dynamic wireless market model
that can flexibly adjust the share of resources assigned to
network slices in order to achieve the maximum utility for
tenants. The contributions of this work can be summarized as
follows:
• An enhanced short time scale wireless market model

based on different services and service quality metrics,
• Integration of channel-aware opportunistic resource allo-

cation and trading in a sliced shared network,
• Self-optimization of the network slices based on the

tenants’ market power and the traffic mix,
• Self-adaptation of the resource distribution according to

the wireless channel condition,
• Dynamic and automated market driven pricing of the

wireless resources.
The remainder of the paper is organized as follows: Sec-

tion II contains the system model and the main assumptions.
Following the system model, the optimization model is pre-
sented in Section III. In Section IV, the behavior and the
validity of the optimization model are investigated through
simulations. Section V concludes the paper and discuss pos-
sible extensions of the proposed approach.

II. SYSTEM MODEL

In order to provide a flexible and adaptive resource sharing
algorithm for network slicing in a multi-tenant environment,
we introduce a dynamic negotiation platform, shown in Fig. 1,
which interacts with the different stakeholders and, based on
the received inputs, allocates resources, assesses the perfor-
mance and evaluates the corresponding costs. Namely, in our
system model, the stakeholders are as follows: a set of tenants
M , with index m, sharing the downlink of a base station,
an infrastructure provider (InP) who provides the shared base
station, and a set of users K, which requires heterogeneous
services to their corresponding tenant. Also, let the set Km

be the set of users of tenant m, and thus
∑
m∈M

|Km| = |K|.

In particular, we assume that each user requests only one type
of service and the number of active users per tenant, i.e. the
cardinality of Km, is the same for all tenants (i.e. tenants have
similar market shares). Time is discretized into slots, n, where
N is the set of all time slots, i.e. simulation horizon.

In order to regulate the sharing of resources, service level
agreements (SLAs) exist between the InP and the tenants. In
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Fig. 1. Proposed negotiation platform.

particular, we assume that the slice of tenant m is defined by
three parameters, Sm, ∆m and Wm. Sm ∈ (0, 1), referred to
as guaranteed resource share, indicates the ratio of resources
that tenant m expects to receive in average. Furthermore, to
guarantee flexibility, we assume that the resource allocation
can deviate from the guaranteed resource share. In particular,
the maximum average allowed deviation is denoted as ∆m

(as introduced in [23]). Namely, ∆m sets the limit on the
maximum deviation from Sm within a tenant-specific time
window, Wm (over which the average is computed). Therefore,
within each time window Wm, tenant m receives (in average)
a fraction of resources between (Sm −∆m, Sm + ∆m). Note
that, the time constrained imposed by the time window Wm

can also be used to achieve differentiation among tenants and
corresponding services. Differently from [23], where sharing
parameters were assumed to be constant, in this work, to fully
exploit the advantages of dynamic trading, Sm and ∆m are
periodically updated. Namely, the period of such updates is
set by the InP and is referred to as “renegotiation interval”.

Furthermore, we assume that tenants set their utility targets,
Uth ∈ (0, 1) and their available budgets, Bm. In contrast,
the InP is responsible for setting the respective costs of
the wireless resources (c.f. Fig. 1). The total cost of the
wireless resources consists of three parts, i.e., capital expenses,
Cca, operational expenses, Cop and pressure cost, Cpre. We
assumed that the infrastructure provider does not have profit
constraints and his main objective is to run a sustainable
business model. Therefore, Cca and Cop are scaling the cost
of the conventional infrastructure and the operational cost of
the resources. The pressure cost helps the regularization of
the resource allocation. Similar to any demand based market,
the pressure cost also regulates the resource consumption. For
instance, if the system does not have sufficient resources to
satisfy all the users, i.e. resource scarcity, the pressure cost
is set to be greater than zero, so that tenants will have less
incentive to buy resources (in terms of Sm), but more incentive
to trade resources (via ∆m). In contrast, in case the system has
more than sufficient resources for all the users, i.e, resource
surplus, the pressure cost is set to zero, reducing the overall
cost and increasing the incentive to buy. Moreover, pressure
cost can be seen as a way for the InP to collect the necessary
revenue in order to upgrade or expand the existing network
capacity (in case of resource scarcity). The pricing mechanism
is further explained in Section III.

Based on all the inputs described above as well as the users’
channel conditions, the proposed negotiation platform opti-

mally allocates the resources to the different slices. Namely,
let xk[n] be the wireless resources allocated to user k at time
slot n, and rk[n] the achievable rate for user k at time slot
n. The actual achieved rate of user k at time slot n is then
given by rk[n]xk[n]. Furthermore, we assume that each user
k produces a utility Uk[n] that depends on the achieved rate
as well as the requested service type. The average achieved
utility of tenant m at n is the average achieved utility over
all its users, i.e.

∑
k∈Km

Uk[n]
|Km| . The difference between the

utility target Uth and the average achieved utility is defined
as the tenant’s gap and denoted by ξm[n]. Such gap is used
to measure the performance of the proposed resource sharing
algorithm, where the best possible operating point is the one
for which the gap is equal to zero.

A. Utility Functions

Even if the quality perceived by the users depends on
several elements, we assume in this paper that it can be
quantified by using the achieved rate. We therefore consider
a generic continuous utility function Uk(Rk[n]), function of
the average achieved rate Rk[n], as shown in Fig. 2(a).
This function is used in our framework to model different
utilities for heterogeneous services. Namely, each specific
service function is determined by varying six parameters, i.e.
U1, U2, U3, R1, R2 and R3. The minimum rate, required to
consider a service as active, is assumed to be R1. When the
average achieved rate is lower than R1, i.e. Rk[n] < R1, the
utility function returns the utility value U1 ≤ 0. In case the
service achieves the average rate of R1 than the utility returns
zero. R2 represents the standard quality for the services where
the utility function provides a utility value equal to U2. Finally,
R3 indicates the saturation point for the utility function, after
which the function becomes non-increasing. The maximum
utility for the service type, that is achieved at Rk[n] = R3,
is given by U3. Note that the choice of piece-wise linear
functions is mainly due to mathematical tractability, but this
does not limit the validity of the proposed sharing platform,
which can incorporate also more complex functions.

Using the generic utility function presented above, we
defined the specific utility functions for four service types
envisioned for 5G: elastic, inelastic, M2M and background ser-
vices. In particular, prioritization (or fairness) among services
(and in particular between critical and non-critical services)
can be set by using different (or equal) slopes of the utility
functions (e.g. between R1 − R2 and R2 − R3). A detail
description of the specific utility functions chosen for the four
different services is given in the following and reported in
Fig. 2(b).

1) Elastic traffic: By definition, elastic services, do not
have strict rate or delay constraints. Thus, we consider them to
be active as soon as the average achieved rate is greater than
zero, Rk[n] > 0, meaning R1 = 0 and U1 = 0. Moreover,
for elastic users we do not set any upper bound on their rate
expectations, meaning R3 → ∞ and U3 → ∞. Since the
service requirements are quite flexible, the utility function has
a smaller slope compared to the one of the other services in
any of the same regions.
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Fig. 2. Generic utility function (left) and exemplary utility functions per
service type (right).

2) Inelastic traffic: Being a demanding service type, in-
elastic services require a minimum rate to provide service
availability, e.g. as in the case of video streaming. For this
reason, we set R1 relatively high, e.g. to provide a continuous
service experience to the users. Similar to video streaming, the
utility of inelastic services (i.e. perceived quality) is highly
affected by the fluctuations of the achieved rate (e.g., the
variations in the video quality between 144p and 720p).
Therefore, we impose a steep slope between R1 and R2 to
force a quick increase in the utility as a function of the average
achieved rate. However, after reaching a certain quality, the
increase in the average achieved rate is less noticeable, and
therefore, between R2 and R3 we choose a lower slope. As
mentioned above, to enforce fairness, the slope of inelastic
services between R2 and R3 is equal to the one of elastic
services between R1 and R2.

3) Background traffic: Background services refer to ser-
vices that usually run in the background and require relatively
very low rate and as soon as this is reached, the utility function
reaches its saturation point, i.e. R2 = R3. Furthermore, since
they do not have a strict delay constraint, the minimum utility
is considered to be zero, i.e. U1 = 0.

4) Machine to machine traffic: We group the heterogene-
ity of the M2M services envisioned in 5G into three main
categories and model the M2M requests as a mixture of all
three of them. Namely, the M2M utility function represents
three types of services, i.e. emergency, low-rate-delay-sensitive
and rate sensitive. Here we assume that M2M incorporates all
three services but how the tenant specific resource distribution
within M2M is not covered in this work. However, we consider
that tenants will prioritize their M2M services and assign
resources accordingly. The emergency services, which require
low rate but also very high priority, are modeled with the R1

rate and, since not achieving this rate can have a dramatic
impact on the system, we set U1 to a negative value. Hence,
not serving the emergency services results in a big gap for the
tenants. The low rate and delay sensitive M2M applications
are modeled between R1 and R2. As shown in Fig. 2(b),
for this type of services, since there is a delay constraint,
the utility function characteristic has a relatively large slope.
Finally, for the rate constrained services, as the name suggests,
achieving higher rates has higher priority than having a low
delay. Therefore they are modeled between R2 and R3 with a
relatively smaller slope.

III. SCHEDULING PROBLEM AND ANALYSIS

A. Mathematical programming formulation

The scheduler of the shared base station allocates resources
by using the optimization model formulated in (1a)−(1h).
The proposed techno-economic model runs in real time and
controls both the resource allocation and the respective price
negotiations in an online manner. Namely, the resource shares
of the tenants are dynamically chosen based on their Quality
of Service (QoS) expectations (i.e. the achieved rate per user
and tenant’s time window, Wm), the channel conditions and
tenant’s market power (i.e. their budget, number of users and
traffic mix). The optimizer dynamically assigns resources to
each slice per service type and per tenant to minimize the
total gap, i.e., as in (1a),

∑
m∈M ξm. By jointly optimizing

the resource allocations for all tenants, the scheduler has the
flexibility to prioritize the users with the best channel condi-
tions and therefore maximize the utilization of the resources
and spectral efficiency.

Constraint (1b) sets the gap of tenant m as the difference
between its target utility (i.e. Uth) and the sum of the achieved
utility over its users (i.e. sum of Uk(Rk[n])). Note that within
each time window, of length Wm, we evaluate the average by
considering the values from the beginning of the time window
to the current time slot n, i.e. over am + 1 time slots, where
am ≡ n − 1 mod Wm. Therefore, the average achieved rate
for user k at time slot n is

Rk[n] =
1

(1 + am)

( n∑
i=n−am

xk[i]rk[i]

)
.

Furthermore, we assume that all the users have the same
importance to the tenants, thus, U3 = Uth,m/Km ∀k ∈ Km.
By selecting the same value of maximum utility, U3, for all
the users, the tenants also claim neutrality in their provided
services. However, depending on the agreements between the
service providers and the tenants, as well as in accordance to
regulatory constraints, this value can be changed, thus allowing
our model to include also non-neutral services.

The instantaneous average deviation from the guaranteed
resource share, εm[n], is given in (1c). Namely, the instan-
taneous deviation at n for tenant m is given by subtracting
the guaranteed resource share Sm from the average assigned
resource to the users of m, where the average, as done for
the average achieved rate, is evaluated from the beginning
of the current time window till time slot n. Constraint (1d)
ensures that εm[n] is not larger than ∆m, which by definition
is the tenant-specific maximum allowed deviation. Note that
εm can be either positive or negative, i.e. εm ∈ [−∆m,∆m].
The former case indicates that the tenant has received – on
average and within the current time window – more resources
than Sm, while the latter case corresponds to the opposite.

Furthermore, constraint (1e) sets the budget constraint per
tenant. The first term of the left-hand-side scales both CAPEX
and OPEX according to Sm, which means that in case of no
sharing (when ∆m = 0) the tenant will have to pay for the
requested resources. The second term, i.e. εm[n]Cop, allows
tenants to dynamically adjust their total cost according to
their resource usage and budget. Namely, if a tenants’ actual
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min
xk[n]

∑
m∈M

ξm[n] (1a)

s.t. Uth,m −
∑
k∈Km

Uk(Rk[n]) ≤ ξm, ∀m ∈M, (1b)

εm[n] =

(
1

(am + 1)

n∑
i=n−am

∑
k∈Km

xk[i]

)
− Sm, ∀m ∈M,

(1c)
|εm[n]| ≤ ∆m, ∀m ∈M, ∀n ∈ N, (1d)

n∑
i=n−am

(Sm(Cca + Cop) + εm[i]Cop + fpre(Cpre, ξm))

≤ Bm(am + 1),∀m ∈M,

(1e)

0 ≤ ∆m ≤
1

am + 1

n∑
i=n−am

∑
k∈Km,elastic

xk[i], ∀m ∈M,

(1f)∑
k∈K

xk[n] ≤ 1, xk[n] ≥ 0, ∀k ∈ K, (1g)

∑
m∈M

Sm ≤ 1 , Sm ≥ 0, ∀m ∈M, (1h)

resource usage is less than the guaranteed resource share (i.e.
εm[n] < 0), then the tenant will not pay for the OPEX cost
of the unused resources. The third term in the left-hand-side
of the budget constraint is a function, fpre(Cpre, ξm), of the
pressure cost unit Cpre, defined by the InP, and of the tenant’s
gap ξm. Namely, the gap considered for the evaluation of the
pressure cost is the one obtained at the end of the previous time
window (i.e. it varies at every time window, but kept constant
within the same time window). The effects of the pressure
cost term are evident when, e.g., there is a resource demand
that exceeds the available resources. In this case, since the
resources are limited, the tenants face non-zero gaps, ξm > 0,
which corresponds to an increase of the pressure cost as well
as of the total cost of resources. This increase in the cost
pushes tenants to increase their ∆m and decrease Sm. In the
extreme case, tenants opt for full sharing, i.e. ∆m = 1, which
allows the scheduler to provide the most spectrum efficient and
cost efficient allocation. Moreover, the pressure cost allows
the infrastructure provider to accumulate additional revenues
not directly used for the current infrastructure, but envisioned
to support capacity expansion to meet the tenants’ quality
requirements. In this respect, scaling the pressure cost by the
gap provides an accurate estimation of the capacity needed to
satisfy all the tenants.

Constraint (1f) forces the maximum deviation ∆m to be at
maximum equal to the resources assigned to the elastic users
of tenant m, which implies that tenants are not willing to trade
resources used for critical, i.e. non-elastic, services. By setting
∆m = 0, tenants indicate that their services are non-elastic and
they require the resources they stated by Sm. However, in this
case, they also lose the flexibility to adapt to traffic dynamics.
Finally, (1g) ensures that the assigned resources do not exceed
the total available resources in the system and, similarly, (1h)

limits the sum of all Sm to the total amount of resources.

B. Two-step approach

The formulation presented in the previous section is able
to capture the dynamics of the resource negotiation, consid-
ering both the scheduling aspects as well as the economical
constraints (prices and budgets). However, due to its compu-
tational complexity, it is not suitable to be used in real-time.
Therefore, we decide to split the two decisions that have to
be taken, namely on the real time resource allocation and on
the negotiations of the sharing parameters.

In particular, we separate our model into two sub-problems,
P1 and P2. The first problem, P1, focuses on the real time
resource allocation with the objective of minimizing the total
gap and it is solved at every time sot n. During P1, the
sharing parameters (Sm,∆m) are assumed to be constant and,
therefore, the constraints that regulates the sharing (i.e. (1f)
and (1h)) are inactive. The outcome of P1 is then given by
the allocated resources and corresponding tenants’ gaps. The
second problem, P2, is solved at the end of each time window,
to update the sharing parameters according to the current
users’ channel conditions and tenants’ targets (i.e. in terms of
Uth,m). In this case, the objective is to find the best sharing
parameters so that the total gap of the previous time window
is minimized. Namely, P2 receives as input the achievable
rates from the previous time window and derives the optimum
sharing parameters Sopt

m and ∆opt
m by solving (1a)−(1h).

Note that even if both P1 and P2 are derived from the same
formulation (1a)−(1h), they are actually different problems
since the active variables (and constraints) are different.

C. Exploiting the channel information

The real-time scheduling problem, P1, myopically focuses
on the optimization of the current time slot n without taking
into account the upcoming slots. Thus, it is incapable of
fully exploiting the transmission opportunities. As a result,
P1 requires a larger amount of resources compared to the one
estimated by P2 in order to provide comparable performance.
As a matter of fact, P2 derives the minimum values of Sm
and ∆m required to minimize the gap, which are overly
restricting for P1. Therefore, to improve the performance of
P1, a channel-aware filter is designed to exploit the statistical
information of the channel.

Specifically, we design a channel-aware filter to evaluate
the rate expectations for the upcoming time slots of each user,
while scheduling the resources for the given time slot n. Even
though prediction techniques of the channel characteristics
are out of scope of this paper, we assume that the infras-
tructure provider can derive a statistical profile of the chan-
nel behaviors. Therefore, we assume that the infrastructure
provider learn a probability density function of the achievable
rates for each user k ∈ K, which can be used to evaluate
the probability, for that specific user within the given time
window, of being in the “best” time slot to assign resources,
Prk[n] = P (rk[n] ≥ rk[i] ∀i ∈W ) ∈ [0, 1], i.e. the slot with
best channel conditions compared to the other time slots. In
particular, a probability value of 0 indicates that the channel
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Fig. 3. Variation of the sigmoid function for different a1 (left) and a2 (right)
values.

condition at slot n is the worst that can ever be observed,
thus, the scheduler should avoid assigning resources, while a
value of 1 means that the current channel condition is the best
possible and therefore as many resources as possible should
be assigned. However, we do not use directly this probability,
but we filter it as described below before passing it as input
to P1.

We design a two-step filtering function to map the statistical
information onto the assignment decisions. On the first step,
the statistical information is scaled using a sigmoid function,
i.e. f(Prk[n], a1, a2) = 1/(1+e−a1(Prk[n]−a2)), as presented
in Fig. 3. The characteristic of the sigmoid function can be
controlled by using two parameters, i.e. [a1, a2] (cf. Fig. 3(a)
and Fig. 3(b)). The former parameter, a1, controls the slope
of the linear region of the sigmoid and indirectly controls the
resource efficiency. Namely, assuming that the number of users
is low, decreasing the slope of the linear region leads to a
situation where there exists unassigned resources while the
tenants cannot achieve their goals. In contrast, increasing a1
results in assigning resources also with bad channel conditions,
thus decreasing the efficiency of the channel utilization. The
latter parameter, a2, allows the shift of the sigmoid function
(c.f. Fig 3(b)). In this case, choosing large values of a2
gives advantages only to the users with high probabilities.
However, when tenants select small time windows, this leads
to unassigned resources even in the presence of gaps. In
contrast, small values of a2 equalizes all users does making
the filter ineffective.

The output of the sigmoid function, f(Prk[n], a1, a2), pro-
vides an understanding on how good the channel conditions for
a specific user are with respect to what such user can achieve in
the given time window. However, f(Prk[n], a1, a2) does not
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Fig. 4. Changes in the charachteristic of the filter function according to the
variations of p.

give information about how good the channel is with respect
to the other users in that time slot. Therefore, the first step of
the filter might not be sufficient to guide the scheduler when
there is a significant difference among the distributions of the
users’ channel.

Consequently, an additional filtering step is introduced
to capture this variations among users’ channel conditions.
More specifically, taking the output of the sigmoid function,
f(Prk[n], a1, a2), the second step outputs f(Prk[n], a1, a2)p,
where p is a scalar. If the variations in the achievable rates
among users are negligibly small, e.g. the users have similar
pathlosses, p value can be set to 1. In contrast, if the difference
is not negligible, a larger value of p should be chosen.

The output of the filter function, referred to as “priority
coefficient” and indicated by βk[n], is then used by the
scheduler to give priority to the users with the best channel
condition (i.e. βk[n] = 1) and to discard the users with worst
channel conditions (i.e. βk[n] = 0). In order to incorporate
this information in P1, the constraint (1b) is updated as

Uth,m −
∑
k∈Km

βk[n]Uk(Rk[n]) ≤ ξm, ∀m ∈M. (2)

Since the channel information is used to guide the real-time
scheduling algorithm, the gap values calculated by P2 are then
derived without priority coefficients, as given in (1b).

Note that the specific values chosen for [a1, a2] as well as
p, combined with the channel conditions, affect the resource
allocation. Hereafter, we do not discuss the policies used
by the tenants to select those values, but assumed they are
given (i.e. we empirically derived those used for the numerical
evaluation).

D. Update mechanism

As described above, P2 derives the optimum sharing pa-
rameters, i.e. Sopt

m and ∆opt
m , for all the tenants, in order

to achieve the minimum total gap
∑
m∈M

ξopt
m . However, it is

important to remember that the optimization problem is solved
by using the achievable rates of the previous time window
only, meaning that Sopt

m and ∆opt
m are optimal only with respect

to the previous window. Therefore, to capture the statistic
nature of the channel over a longer time span, the sharing
parameters are updated with a weighted approach. Namely,
the new values for the sharing parameters, Snew

m and ∆new
m to

be used in the upcoming time window, are derived as:

Snew
m = αmS

opt
m + (1− αm)Sold

m , (3)
∆new
m = αm∆opt

m + (1− αm)∆old
m . (4)

where the feature scaling coefficient, αm, is calculated as:

αm =
ξm − ξopt

m

ξm + ξopt
m

. (5)

By definition αm measures the difference between the
achievable optimum gap and the actual gap observed by the
tenant. For instance, when ξm = ξopt

m = 0, the feature scaling
coefficient is also 0, which means that the most recently
calculated sharing parameters are the optimum values and
therefore used also for the upcoming time window without
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scaling. In general, with the proposed update mechanism, our
framework is able to adapt to the varying channel conditions
in a reactive manner. The sharing parameters are automatically
updated to provide service quality which is satisfying the
tenants requirements while maintaining proportional fairness
among them. A thorough study of the αm selection and its
effects on the model’s adaptability has been proposed in [8].

IV. SIMULATION RESULTS

In this section, we first present the parameters and the sim-
ulation setup considered for the evaluation and then show the
effectiveness of the proposed algorithms with some numerical
results.

A. Parameters and simulation setup

We consider the downlink of a single base station that is
shared among |M | tenants. Unless specified otherwise, each
tenant serves |Km| = 4 users and each user is associated
with a specific traffic type, i.e. elastic, inelastic, M2M or
background. The total set of users, K = ∪mKm, is distributed
homogeneously in the coverage area of the base station and
considered to be active for the entire simulation duration,
which is set to N = 5000 time slots, each of length equal to 1
ms. The presented results are averaged over 100 independently
generated instances.

The parameters that are used for the utility functions,
reported in Fig. 2, are given in Table I. The utility target
is Uth,m = 1, ∀m ∈ M . Unless specified otherwise, the
length of the time window, Wm, is considered to be equal,
for all tenants, to the renegotiation interval, assumed to be
80 ms long. The values used for the costs and budgets are
Cca = 20, Cop = 20, Bm = 100,∀m ∈ M . As proposed
in [8], when tenants have all the same budget, the pressure
cost is evaluated as Cca scaled by the number of tenants, i.e.
Cpre = Cca

|M | and f(Cpre, ξm[|Wm|]) = ξm[|Wm|]×Cpre/|Wm|.
A frequency-flat fading channel is assumed between the

base station and the users with i.i.d. Rayleigh coefficients
leading to exponential channel gains, |hk[n]|2. Based on
this, the Signal to Interference-plus-Noise Ratio (SINR) is
calculated for each user k at each time slot n as:

γk[n] = |hk[n]|2
Pd−αk
σ2 + I0

, (6)

where P is the transmit power (in Watts), dk is the distance
between the user k and the base station (in meters) and α is the
path-loss exponent. In this work, the interference is modeled as
the sum of the thermal noise, σ2 and the average interference,
I0. Therefore, by using (13), the achievable rate of user k at
time slot n is expressed by

rk[n] = log2(1 + γk[n]). (7)

Finally, the considered filter values (introduced in Sec-
tion III-C) are set to a1 = 10, a2 = 0.5, p = 3.

TABLE I
SERVICE SPECIFIC PARAMETERS AND THEIR VALUES.

Parameter Elastic Inelastic M2M Background
R1 (bps/Hz) 0 0.1 0.01 0.05
R2 (bps/Hz) 1.083 0.225 0.075 0.07
R3 (bps/Hz) ∞ 0.55 0.4 0.07

U1 0 -0.5 -1 0
U2 1 0.7 0.7 1
U3 ∞ 1 1 1

B. Time complexity analysis

As briefly analyzed in [8], the renegotiation interval, which
is set by the InP affects the time complexity of the algorithm.
Table II depicts the variation of average computation time of
P1 and P2 depending on the renegotiation interval in a scenario
with |M | = 3, |K| = 12. The simulations are run in Matlab,
whereas the optimization problems P1 and P2 are solved by
the Gurobi commercial solver [24]. The simulations are run
on a Intel 2.4 GHz PC with 6 GB of RAM.

Results show that the longer the renegotiation interval, the
longer the time to solve P2. This is reasonable since the
algorithm has to find the optimal sharing parameters over a
longer time interval. In contrast, the solving duration of the
real time scheduler, P1, is mainly not effected by the length
of the renegotiation interval.

TABLE II
EFFECTS OF RENEGOTIATION INTERVAL ON COMPUTATION TIME.

Renegotiation Interval P1 duration (sec) P2 duration (sec)
5 ms 0.0015 0.0431
25 ms 0.0012 0.1923
50 ms 0.0016 0.5069
80 ms 0.0011 1.4832

100 ms 0.0015 2.4412

Note that both P1 and P2 have time constraints dictated by
the system model we proposed. Namely, we need to run P1

every time slot and P2 every time window. In order to obtain
acceptable computation time for real time implementation two
different approaches could be used. From one side, P1 could be
run using more powerful machine to reduce the computation
time below 1 ms. On the other side, for cases where the
computational time of P2 becomes too large, an alternative
heuristic could be proposed, which is, however, out of the
scope of this paper.

C. Value of channel information

In Sec. III-C, we introduce a channel-aware filter to integrate
the statistical channel information in the real time scheduler.
Basically, we propose to replace constraint (1b) with con-
straint (9). The proposed channel-aware approach is a simple
prediction algorithm, that evaluates current channel conditions
taking into account past observations and future expectations.

Hereafter, we want to show the effects of exploiting such
channel information on the total achieved gap with respect
to: (1) the case without channel information (P1 solved using
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constraint (1b)) and (2) the case with perfect knowledge of the
future channel conditions (oracle scenario). Fig. 5 shows the
results for |M | = 2 tenants and |K| = 8 users. We observe
that feeding the model with an estimation of the channel allows
the scheduler to better detect the instantaneous opportunities
and to increase resource and cost efficiency, by decreasing the
total gap.

TABLE III
CHANNEL INFORMATION’S IMPROVEMENT ON THE TOTAL GAP WITH

RESPECT TO NO-CHANNEL INFORMATION CASE.

|K| Improvement of total ξm
8 33.2%

16 38.5%
24 38.6%

Table III shows the effect of increasing the number of users
|K| on the total gap, as percentage improvement with respect
to the oracle case. Increasing |K| gives the scheduler a higher
flexibility in exploiting the transmission opportunities and also
higher probability to detect good time slots. In contrast, when
|K| is small, the scheduler needs higher accuracy to detect
transmission opportunities. However, we can also observe
that the performance improvement saturates when further
increasing the number of users, which indicates a limit in the
improvement that can be obtained by using this approach.

D. Symmetric traffic scenarios

In this section, we report results for the case in which |M | =
3 tenants have symmetric traffic (same amount of users per
service type).

Due to the symmetry among tenants, we observe an equiv-
alent resource and cost distribution, as shown in Fig. 6. This
proves that, as desired, in symmetric cases our model behaves
perfectly fair among tenants. Furthermore, Fig. 7 reports the
average utility per tenant per service and, as above, we observe
that there is a symmetric behavior among tenants, but different
prioritization among slices, i.e., services. Namely, due to the
utility based prioritization, when the system does not have
sufficient resources to fully satisfy all of them, the elastic
users are penalized and reach lower utility compared to the
other services. Moreover, both inelastic and M2M services
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Fig. 6. Average resource distribution and average total cost per tenant for
|K = 12|.

are achieving an average utility less than 1 due to the utility
function used (c.f. Fig. 2(b)). Namely, after reaching the utility
value of U2, all the services have the same slope, that provides
fairness between elastic service and the rest of the services.
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Fig. 7. Average utility per service per tenant.

Now, we show how the proposed framework reacts to load
changes. In particular, we increase the number of users of
each tenant to |Km| = 16 users (i.e. total number of users
|K| = 48), while keeping fixed the system capacity and
utility function parameters. As shown in Fig. 8, despite the
strong competition for resources, fairness among tenants is
still achieved. Moreover, in Fig. 8(b) even more emphasis
is shown on the prioritization given to different services. As
expected, the elastic traffic, which has the lowest priority, is
being affected mostly from the resource scarcity. In contrast,
such prioritization guarantees that the emergency and low-
rate-delay-sensitive M2M traffic (i.e. defined in Section II-A4)
can achieve the service expectations even in such an extreme
scenario (which is proved by the fact that for this service type
at least utility equal to U2 is achieved).

Another interesting effect of the increasing load is shown
in Fig. 9. We observe that resource scarcity affects tenant’s
convenience to trade resources. As a matter of fact, when
|K| = 12, ∆m converges to a non-zero value, guarantee-
ing a certain level of flexibility in resource allocations (c.f.
Fig. 9(a)). This flexibility allows the scheduler, and tenants,
to adopt an opportunistic behavior thus enhancing cost and
resource efficiency. On the other hand, when load drastically
increases (c.f. Fig. 9(b)), the inability of serving elastic users
pushes ∆m = 0, ∀m ∈ M thus reducing the flexibility of
sharing.
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Fig. 8. Average resource distribution and average utility per service per tenant
for |K| = 48.
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E. Impact of time window

In this section, we analyze the impact of time window
differentiation among tenants. Fig. 10 and Fig. 11 shows the
effects of varying the time window length on the resource
distribution between |M | = 2 tenants in case of resource
scarcity and resource surplus, respectively.
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Fig. 10. Effects of window differentiation on average resource distribution
per tenant in resource scarcity scenario.
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Fig. 11. Effects of window differentiation on average resource distribution
per tenant in resource surplus scenario.

Generally speaking, smaller time windows indicate that
the tenant’s requirements need to be satisfied with higher
frequency (i.e. within a shorter time frame). Therefore, due to
the more stringent delay constraints, the InP has to prioritize
the tenant with smaller Wm in order to be able to satisfy its
utility target. From one side, this prioritization does not affect

the resource distribution among the two tenants, whenever
there are sufficient resources to satisfy all the tenants, i.e.
resource surplus (cf. Fig. 11). On the other side, however, in
case of resource scarcity (cf. Fig. 10), the priority given to the
tenant with smaller time window (Tenant 2 in this example)
causes an imbalance in the resource allocation, which increases
proportionally to the difference between the window lengths.
Since choosing a smaller time window corresponds to poten-
tially getting more resources, the selection of this parameter
has to be monitored by the InP or regulatory body.
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Fig. 12. Effects of window differentiation on average utility per service in
resource scarcity scenario.

Fig. 12 shows the effects of time window differentiation on
the average utility per tenant per service in case of resource
scarcity. As expected, the tenant with smaller time window
receives a higher priority in the scheduler, which corresponds
to a higher average utility with respect to the one achieved
by the other tenant. Furthermore, results show that the service
which is most penalized by the prioritization is the elastic one.
In contrast, non-elastic services are preserved by the utility
based prioritization (i.e. the slopes of the utility functions
shown in Fig. 2(b)) and experience only marginal decrease
in the achieved utility. On the other side, the tenant with
smaller time window perceive an increase in utility for all
the services, critical as well as elastic. Note that this has the
negative effective of reducing the efficiency in resource usage,
since more resources are assigned to one of the two tenants,
independent of the channel conditions of its users.

Finally, Fig. 13 and Fig. 14 reports the economic effects
of window differentiation. Fig. 13 shows that, according with
the resource distribution, the tenant with smaller Wm pays
a higher cost, in average, while the tenant with larger time
window length decreases the total costs. On the other hand,
Fig. 14 reveals that the tenants actual average cost per bps/Hz
is similar for all cases. This confirms that the costs paid by
the tenants is actually proportional to the resources they get.

F. Adaptation to changes in traffic mix

In [15], we analyze the ability of the proposed model to
adapt to changes of the wireless environment, and conclude
that, in case of resource scarcity, such changes mainly affect
the elastic services and our model is able to converge to a
new optimal state adapting to the new conditions. Differently,
here we consider a resource surplus scenario, and analyze the
reaction time and the effects of varying the traffic mix of the
tenants.

Fig. 15 shows the adaptation to the changes in the traffic
mix. In particular, we assume that till n = 1920, the two
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Fig. 13. Effects of window differentiation on average total cost per tenant in
resource scarcity scenario.
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Fig. 14. Effects of window differentiation on average total cost per bps/Hz
in resource scarcity scenario.
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Fig. 15. Adaptation to the variations in the traffic mixture.

tenants have symmetric traffic, i.e. 1 user per service type
and a total of |K| = 8 users. At n = 1920, the traffic
mix of the tenants changes as follows: the first tenant retains
only non-critical services (i.e. it has 2 users with elastic
services and 2 users with background services) while the
second tenant specializes on critical services (i.e. 3 users
with inelastic services and 1 user with elastic service). In
Fig. 15(a), we observe, between n = 1920 and n = 2000,
a gradual change in the instantaneous assigned resources.
After at least one renegotiation interval, the tenant’s sharing
parameters are updated, and this leads to a converge of the
resource assignment. In Fig. 15(b) and Fig. 15(c), the average
utility per service per tenant is shown before and after the

traffic mix change, respectively. Note that, after the change,
the elastic services achieve in average a smaller utility. This is
due to the fact that the number of users per service increases,
which means that the resources requested by the non-elastic
service (background for tenant 1 and inelastic for tenant 2)
also increase.

G. Service specialized tenants

This section investigates the effects of service specialization
on the proposed model. More specifically, we analyze the
coexistence of four tenants with only one service type and
one tenant with multiple service types. This also helps us
addressing the question on whether our framework incentives
tenants to enter the sharing market as specialized tenants or, in
contrast, it is neutral to this choice. Therefore, we consider the
scenario with |M | = 2 tenants, where the first tenant enters
the market as virtually 4 different tenants (one per type). Also,
we assume |K| = 16 users in total (2 users per service per
tenant).
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Fig. 16. The average utility per services per tenant

Fig. 16 clearly shows that entering the market as specialized
tenant does not provide any advantages in terms of average
achieved utility. Furthermore, Fig. 17 shows that a symmetry
between the specialized tenants and the tenant with multiple
services also exists in terms of the total average costs. Finally,
Fig. 18 reports the resource distribution among tenants, which
clearly indicates that also resources are split equally (i.e. each
tenant gets approximately half of the available resources).

We can conclude that the propose framework and corre-
sponding pricing mechanism are neutral to service specializa-
tion. Also, service prioritization (defined in Section II-A) is
preserved and fairness is achieved in terms of both resource
allocation and costs.
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Fig. 19. Effects of increasing number of tenants on the average utility and
average costs per tenant.

H. Costs and utility in different sharing scenarios

In this subsection, the effects of the number of tenants |M |
on the average cost per tenant and the average utility per tenant
per service are investigated. The analysis is conducted consid-
ering two different time scales, i.e. short term and long term.
In the short term, we assume that the infrastructure provider
cannot react to the increase in the number of tenants |M |
(and thus users |K|), e.g., expanding the available capacity. In
contrast, in the long term the capacity is scaled according to
the demand.

Fig. 19(a) shows the result for the short term analysis,
where the capacity is kept fixed while increasing |M |. On
the other hand, Fig. 19(b) reports the result for the long term
assumption, where the capacity is proportionally increased
with |M |. Namely, we assume that the increase in capacity
is achieved by the infrastructure provider increasing the total
bandwidth. Results show that in the short term, Fig. 19(a), as
expected, increasing the number of tenants causes a resource
scarcity and leads to a decrease of the average utility per
tenant. On the other hand, as shown in Fig. 19(a), the increase
in |M | also causes a decrease of the individual costs of tenants.
In contrast, when considering a longer time scale (in the order
of months), the infrastructure provider can react to the changes
in |M | and adjust the available capacity according to the needs.
In this case, as depicted in Fig. 19(b), the average achieved
utility and the average cost are not a function of |M | (i.e. are
almost constant when varying |M |).

Therefore, from one side we can conclude that, in the

long term, if the InP is able to expand the network capac-
ity according to the tenants’ needs, the proposed platform
provides a sustainable resource sharing even when increasing
|M |. On the other side, in the short term, we cannot draw
any conclusion only looking at Fig. 19(a), since a decrease of
the average utility could be compensated by a decreasing in
terms of cost (and hence price for the users). To evaluate the
tradeoff between utility and cost (price), we use the concept
of acceptance probability presented in [25]. In particular, the
authors propose to model the acceptance probability as:

Ak(p, Uk) = 1− exp(−Cp−εUµk ), (8)

which basically corresponds to the likelihood of user k to
accept a service with price p and a corresponding utility Uk,
where µ and ε are microeconomic parameters and C is a
constant (that we set to the same values suggested in [25]).

To assess the sustainability of the sharing platform, we
assume that each tenant aims to keep its profit constant,
regardless of the number of tenants, which means that a
variation of the costs directly affects the prices (that are
computed as the sum of the costs and the profit). Therefore,
increasing |M | is accepted by the tenants, if the market share
(i.e. the number of users) of each tenant is not decreasing,
meaning that the acceptance probability (Ak(p, Uk)) should
be a non-decreasing function of |M |.

By using (15), the condition above can be written, for two
generic values |M1| ≤ |M2|, as:

Ak,M1
(pM1

, Uk,M1
) ≤ Ak,M2

(pM2
, Uk,M2

), (9)

where

Ak,M1
(pM1

, Uk,M1
) = 1− exp(−Cp−εM1

Uµk,M1
),

Ak,M2(pM2 , Uk,M2) = 1− exp(−Cp−εM2
Uµk,M2

).

Assuming that the parameters µ, ε, and C are the same for
both M1 and M2, (16) can be written as(

Uk,M1

Uk,M2

)µ
≤
(
pM1

pM2

)ε
. (10)

Satisfying (17) means that the variation in the average utility
is accepted by the users since it is compensated by the decrease
of the service price. In this case, the acceptance probability of
k ∈ K is a non-decreasing function of |M |.

Considering the same scenario of Fig. 19, Table IV reports
the numerical values for (17). As one can observe, the inequal-
ity is always satisfied, which means that the users are paying
less for their utility, and they are still willing to accept the
service. Therefore, we can conclude that our proposed model
provides a cost efficient and sustainable model even in the
short term.

A further insight is given in Table V, where Eq. (17) is
evaluated for all the slice types (where ‘yes’ means that the
Eq. (17) holds). In this case, we can see that, by increasing
the number of tenants from |M | = 4 to |M | = 5, the
acceptance probability of the elastic users decreases, whereas
always increases for non-elastic services. This means that the
tenants have a risk of losing some of the elastic traffic.
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TABLE IV
VARIATION OF AVERAGE UTILITY AND TOTAL COSTS PER TENANT WITH

THE NUMBER OF TENANTS IN SHORT TERM.

|M1| → |M2|
(
Uk,M1
Uk,M2

)µ (
pM1
pM2

)ε
2 → 3 1,2834 3,7822
3 → 4 1,1744 2,6893
4 → 5 1,1372 2,2142

TABLE V
EVALUATION OF THE USERS’ ACCEPTANCE PROBABILITY FOR ALL SLICE

TYPES. WE USE ‘YES’ TO INDICATE THAT EQ. (17) HOLDS, ‘NO’
OTHERWISE.

|M1| → |M2| Elastic Inelastic M2M Background
2 → 3 Yes Yes Yes Yes
3 → 4 Yes Yes Yes Yes
4 → 5 No Yes Yes Yes

The decrease in elastic services acceptance probability can
be handled by an accurate and timely capacity expansion. The
proposed pressure cost allows the infrastructure provider to
accurately estimate the capacity needs and the expansion time.
Even though increasing |M | leads to lower utilities, since the
collected pressure cost proportionally increases with the utility
decrease, higher |M | also implies faster capacity expansions.

V. CONCLUSION

We have shown that dynamic network slicing offers an effi-
cient way of exploiting variable traffic and channel conditions
to share resources among tenants with different characteristics
and strategies. Our proposed scheme defines a new platform
where tenants can acquire resources over a short time scale,
negotiating through a set of network and economic parameters.
Numerical results show that the proposed approach provides
fairness among both tenants and services and can improve
the efficiency of resource allocation up to 40% by exploiting
simple prediction mechanisms. Despite the tenants share a
common infrastructure, results have also demonstrated that it
is possible for them to differentiate their services by tuning
model parameters. We have also shown that the pricing model
can allocate economic resources for capacity expansion and
that this is crucial to keep infrastructure sharing convenient
for the tenants.
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Abstract—The inefficiency of the real-time network slicing
and resource allocation algorithms are widely researched in
literature. In a shared network, this inefficiency becomes more
critical due to the economical impacts of the network decisions.
Extending our previous reactive network slicing model, in this
paper, we propose an anticipatory network slicing framework
that can exploit the prediction information in order to increase
the spectral efficiency. The proposed model provides an efficient
and sustainable trading framework for all parties, namely, a
higher average achieved utility for a lower cost for the tenants
and enhanced capacity management for infrastructure provider.

I. INTRODUCTION

The saturation in the consumer market and the decreas-
ing profitability of the network provisioning make the cost
efficiency as the dominant factor in the transition to the
next generation wireless networks. As the cost reduction
becomes a key challenge, in parallel, the network operators
begin searching for alternative revenue sources. The recent
researches reveal that serving to the specialized industry
segments can boost the revenues as high as 36% [1]. On the
other hand, in order to accommodate these new markets, the
prevalent network infrastructure has to support a multitude of
vertical applications with diverse requirements that pushes the
technical limits. Moreover, a key aspect while increasing these
technical capabilities is to preserve the existing infrastructure
as much as possible [2].

A relatively new idea to solve the heterogeneous require-
ments of the different services is to provide both storage
and processing resources along with the respective network
resources [3]. Consequently, this approach lead to logically
slicing the network resources and optimizing each slice based
on the requirements of the respective service. Thus, through
network slicing, the network resources (in terms of spec-
trum, network functions and computational power) can be
customized to achieve the maximum quality of service (QoS)
per service type. [4]

A. Related Works

The simplest way of slicing a network is statically dividing
the network resources according to the slice templates and
the stedy state conditions, whose advantanges are analysed
in [5]. Contrastively, the lack of flexibility in static slicing
often results in cases where the operators lose their capability

to compensate the variations in the channel and the traffic
demand which eventually leads lower spectral efficiency and
higher costs. On the other hand, by exploiting the transient
conditions, the performance of the slicing can be enhanced.
In [6], a dynamic slicing and trading framework has been
proposed in multi-tenant networks, where the tenants can
update their shares in short time scales (i.e. in the order of
millisecond) and follow the most efficient (both in terms of
cost and performance) resource allocations for themselves. The
concept of network slicing in order to accommodate multiple
services leads to the idea of serving multiple tenants using the
same infrastructure in order to decrease total cost, namely in-
frastructure sharing [7]. Despite its well investigated structure,
the infrastructure sharing literature is mostly based on well
defined service level agreements (SLAs) that covers long time
intervals (e.g. in scale of months). Following the expectation
of cost reduction, majority of the works in literature focus on
either the economical impacts of sharing, such as [8] [9], or
the technological enablers of sharing, like [10] [11]. However,
the changing landscape of mobile networks requires a through
analysis of techno-economic aspects of sharing.

Furthermore, it is a well known fact that the real time
scheduling is always wasteful due to its local focus. The full
potential of network slicing can be attained by anticipating the
evolution of the system dynamics using past observations and
the current state of the network. Although the anticipatory
networking has been well-investigated, its applicability to
the field of network slicing and slice trading is novel. [12]
investigates the advantages of anticipatory network slicing
considering static SLAs and a prediction algorithm with high
accuracy. However, due to time complexity, such a compli-
cated approach cannot be used in real time algorithms. In
[6], we integrate a simple prediction algorithm to the network
slicing problem in order to overcome the inefficiency of the
real time resource scheduler. [2] outlines the major prediction
methods to various networking problems and gives some
insight about the optimization techniques in anticipatory net-
working. Among the methods presented in [2], auto-regressive
integrated moving average (ARIMA) and the feed forward
neural networks (FFNN) are the most eligible candidates for
our problem of real time network slicing and slice trading
due to their accuracy level and the time complexity. Despite
some studies, e.g. [13], investigate the impact of prediction
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Fig. 1. Proposed negotiation and resource scheduling (RS) platform.

errors on resource allocation, the economic implications of
the prediction errors on a shared network are still unclear.

B. Contributions and Organization

To summarize, the main contributions of this work are as
follows:
• An overview of the anticipation techniques and an inves-

tigation of their suitability to our model,
• Techno-economic analysis on the effects of anticipation

in a sliced and shared network,
• A novel filtering approach designed in order to exploit the

advantages of prediction when the prediction accuracy
is high and to filter out the disadvantages when the
prediction accuracy is low.

The remainder of the paper is organized as follows. Fol-
lowing the outline of the considered system model and the
considered prediction models in Section II, Section III presents
the proposed anticipatory network slicing and trading frame-
work and details the exploitation of the predicted data. The
numerical analysis of the proposed model is presented in
Section IV and Section V concludes the paper.

II. SYSTEM MODEL

As an extension of our previous work [6], we have consid-
ered the dynamic negotiation platform given in Fig. 1 which
summarizes the interaction between the key stakeholders in
our model, namely an infrastructure provider, the set of tenants
(M ) and the set of users (K). Lowercase letters k and m are
used to indicate a specific user and tenant respectively. For the
sake of simplicity, we assumed that each user is related to one
service type and the total amount of users, |K|, is distributed
equivalently among the tenants and shown as |Km| where
∪m∈MKm = K. Following the general approach in resource
allocation literature, the simulation horizon, N , is discretized
and divided into time slots that are indexed with n.

The SLAs between tenants and the infrastructure provider
that controls the resource sharing are mapped to the model
using three parameters, i.e. Sm, ∆m and Wm. The guaranteed
resource share, represented by Sm ∈ (0, 1), shows the average
resource share that the tenant m receives in average. In order
to exploit the dynamic nature of the wireless environment, the
tenants define a maximum deviation from SLA, represented
by ∆m, for a given time window Wm. Therefore, the delay
constraint per tenant is indirectly integrated using Wm. The
tenant specific sharing parameters, Sm and ∆m, are updated
at each renegotiation interval (RI).
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Fig. 2. Generic utility function (left) and exemplary utilities (right).

As given in Fig. 1, tenants set their utility targets, Uth,
and their respective budgets, Bm. The total cost of wireless
resources is modeled as the summation of the operational
costs (Cop), capital costs (Cca) and the pressure cost (Cpre)
which is used to regularize the resource consumption and to
collect the necessary revenue in order to expand the network.
More specifically, in line with any demand based market, the
pressure cost scales the unit cost according to the instantaneous
demand; if there are insufficient resources to satisfy all the
users, pressure cost becomes greater than zero, making it more
expensive to buy the resources. Otherwise, namely if there
are sufficient resources to satisfy all the users, then it will be
zero. Thus, the accumulated pressure cost also indicates the
necessary additional capacity to fully satisfy all the users.

Based on the decided sharing parameters per tenant and the
achievable rate of each user k, rk[n], the real time scheduler
assigns resources per user xk[n]. The actual achieved rate of
k at any time slot n is calculated as rk[n]xk[n] and used in
order to calculate the utility of each user Uk[n]. We assumed
that each user has an equivalent weight in the tenant’s utility
target, indicating that the total achieved utility of the operator
is

∑
k∈Km

Uk[n]
Km

.

A. Utility Functions

As detailed in [6], the utility of each user is measured
based on the average achieved rate of the respective user in
the respective time window. In order to model the utility, we
designed a piece-wise linear function (c.f. Fig. 2(a)) that are
determined using six parameters, i.e. R1, R2, R3, U1, U2 and
U3. If the actual achieved rate is smaller than the minimum
rate requirement, R1, it is considered to be not active and the
service produces a utility value of U1 ≤ 0. R2 indicates the
necessary rate in order to consider the service to receive a
standard quality and produces the utility of U2. The region
between R1 − R2 is designed to have a steep slope due
to the high visibility of the enhancement in the achieved
QoS. Finally, R3 indicates the achieved rate that produces the
maximum utility, U3. Note that any further increase in the
achieved rate after R3 does not effect the utility.

Simmilar to our previous work, [6], the heterogeneity in
envisioned 5G services is captured by considering four major
service types, i.e. elastic services, inelastic services, machine
to machine services (M2M) and background services and their



utility functions are designed to be as given in Fig. 2(b). As the
name suggests, elastic services do not have strict delay or rate
constraints, thus R1 = 0, U1 = 0. Moreover, it is assumed that
they do not have any upper limits for their rate expectations,
meaning R3 → ∞. Inelastic and M2M services assume to
contain all three regions indicated by R1, R2 and R3. For
both of these services, U1 is assumed to be lower than zero,
indicating that not serving these services would even further
decrease the total utility. For M2M service, it is assumed
that each piece-wise linear region captures a different type
of device group, namely, emergency, low-rate-delay-sensitive
and rate sensitive. Finally, the background service is assumed
to need a very low rate and reaches directly to U3 when it is
satisfied, consequently, R2 = R3 and U1 = 0.

B. Auto Regressive Integrated Moving Average

Auto-Regressive Integrated Moving Average (ARIMA) is
widely applied in the field of wireless networks, due to its
simplicity, locality and relatively high performance. Unlike
most of the deep learning mechanisms (e.g. [14]), ARIMA
does not require a long history of the observed function’s
outputs [13]. Through a relatively smaller set of instances,
ARIMA determines a few parameters that would represent
the function best and anticipates the possible behaviors of the
observed function in the upcoming instances.

ARIMA contains five major parameters, namely, the predic-
tion window Wp, learning window Wl, the number of auto-
regressive terms p, the number of nonseasonal differences d
and finally the number of moving average terms q. In the
first step of the algorithm, the past observations within Wl

are used in order to estimate the correlation within the past
and current time slots and the (p, d, q) parameters are chosen
according to these correlations. On the second phase of the
algorithm, using the converged ARIMA parameters (p, d, q),
the upcoming values of the series are predicted. Note that
this values are not only time series depended but also time
dependent, therefore, this analysis over the parameters are
require to be renewed at every renegotiation interval.

C. Feed Forward Neural Networks

The feed forward neural networks (FFNN) or feed for-
ward multilayer perceptron is widely applied in the time
series prediction due to its high precision and capability
to approximate complex functions. Unlike ARIMA, FFNN
requires a relatively long learning period, during which it
learns the correlation among the instances and updates the
weights of the neural network accordingly. FFNN is defined
using four major parameters, namely, the learning window
(Wl), prediction window (Wp), the number of nodes in the
hidden layer (DN ), the number of hidden layers and finally
the number of delays. The two layer FFNN is considered to
be the general approximator [2], thus in this study we limit
the number of hidden layers to one.

In the implemented structure, the FFNN predicts the
DN + 1th instance based on the input of DN . Afterwards, the
DN window is shifted one time, resulting in a delay set that

min
xk[n],Sm,∆m

∑
m∈M

ξm[n] (1a)

s.t. Uth,m −
∑
k∈Km

Uk(Rk[n]) ≤ ξm, ∀m ∈M, (1b)

εm[n] =

(
1

(am + 1)

n∑
i=n−am

∑
k∈Km

xk[i]

)
− Sm, ∀m ∈M,

(1c)
|εm[n]| ≤ ∆m, ∀m ∈M, ∀n ∈ N, (1d)

n∑
i=n−am

(Sm(Cca + Cop) + εm[i]Cop + fpre(Cpre, ξm))

≤ Bm(am + 1),∀m ∈M,

(1e)

0 ≤ ∆m ≤
1

am + 1

n∑
i=n−am

∑
k∈Km,elastic

xk[i], ∀m ∈M,

(1f)∑
k∈K

xk[n] ≤ 1, xk[n] ≥ 0, ∀k ∈ K, (1g)

∑
m∈M

Sm ≤ 1 , Sm ≥ 0, ∀m ∈M, (1h)

would also include the newly predicted instance and this new
delay set is used to predict DN + 2nd instance. The FFNN
continues shifting delay set and making the prediction for the
next instance until it reaches Wp.

III. ANTICIPATORY RESOURCE SCHEDULING PROBLEM
AND ANALYSIS

A. Mathematical programming formulation

The proposed mathematical programming formulation in
(1a)-(1h) distributes the network resources in real time while
enabling a market driven pricing mechanism according to
the QoS requirements of services, achievable rates of the
users, tenants’ budgets and the utility goals. The continuous
objective function, (1a) minimizes the total gap of the tenants
ξm, namely the difference between tenant’s expected utility
and the actually obtained utility, and maximizes the resource
efficiency.

(1b) sets the gap definition per tenant, namely, the differ-
ence between the expected utility and the achieved utility,
Uk(Rk[n]), that is calculated based on the previously defined
utility functions. During the calculation of the achieved utility
at any time slot n, we use the average achieved rate up to the
current time slot through the expanding time window, am+1,
where am ≡ n−1 mod Wm. Thus the average achieved rate
through the expanding time window is calculated using

Rk[n] =
1

(1 + am)

( n∑
i=n−am

xk[i]rk[i]

)
. (2)

The maximum instantaneous deviation per tenant, i.e. defined
in (1c), is limited by ∆m in (1d).



(1e) reflects the economic implications of technical deci-
sions. The left-hand-side of (1e) calculates the total cost of
a tenant, i.e. the summation of capital expenditures (CapEx),
operational expenditures (OpEx), and pressure cost. The first
term, i.e. Sm(CCa + COp), reflects the fact that tenants are
required to pay both the CapEx and the OpEx in parallel
to their resource share in the network. On the other hand, a
flexibility has been provided by the second term, i.e. εm[i]Cop,
that is scaled according to the tenants actual resource usage.
More specifically, this term indicates that the tenants are only
obliged to pay OpEx for the resources that are obtained from
the resource pool. This second term can also provides an
economic incentive to share resources rather than absolute
ownership. The third term, i.e. fpre(Cpre, ξm), is the pressure
cost. By its definition, the pressure cost is a tool for the
infrastructure provider to regulate the price of the resources.
In this paper, we assumed that the infrastructure provider has
no profit constraints and reinvests all the obtained revenue.
Therefore, in order to calculate this cost, we used a multipli-
cation of operators’ gap and the unit pressure cost, i.e. ξmCpre.
However, since ξm is a dynamic entity, in order to give a level
of predictability in pricing, the average gap in the previous
renegotiation interval is used to calculate the pressure cost
in the upcoming renegotiation interval. The right-hand-side of
(1e) is the budget of the tenant, Bm. Note that the Bm is
defined per time slot. Therefore, by multiplying it with the
expanding time window length, am + 1, and summing the
total costs on the left-hand-side, the tenant is given a chance
to use the unused budget from the previous time slots in the
forthcoming time slots within the same time window.

(1f) sets the upper-bound for the delta, i.e. the total amount
of assigned resources to the elastic services through the
previous time window. This approach is chosen to indicate
that the tenants would not be risking to lose the resources
to be assigned to the non-elastic services. (1g) and (1h) are
set to reflect the physical restrictions of the network, namely,
the total assigned resources cannot be more than available
resources and the infrastructure provider cannot sell non-
existing resources.

B. Integration of the prediction data

The mathematical model given in (1a)-(1h) receives the
predicted achievable rates per user, i.e. rpre

k [n], and provides an
optimal resource distribution for the given rpre

k [n]. Therefore,
the simplest way to integrate the prediction data is the direct
implementation of predicted rates in the model. On the other
hand, it is clear that, with this straight forward approach,
any error in the prediction will have a direct impact on
the performance of the scheduler. In order to guarantee the
optimality of the predicted resource distribution for the actual
achievable rates rk[n], it requires a prediction algorithm with
a very high accuracy level, therefore making the rpre

k [n] as
close as to the actual achievable rates rk[n]. Nevertheless,
such a prediction algorithm usually requires a complicated
model and have a relatively small prediction horizon which is
overly restrictive and is not suitable for a real time application.

Consequently, a simpler but less accurate prediction algorithm
is more feasible in our scenario.

In order to prevent the prediction errors from affecting
the resource distribution, the proposed mathematical model is
logically separated into two parts, namely P1 and P2. Using
the complete mathematical model, (1a)-(1h), P2 is the part
where the prediction data is used to determine the predicted
minimum gap, i.e. ξpre

m , sharing parameters, i.e. Spre
m , ∆pre

m ,
and the resource distribution among users, i.e. xpre

k . Note that
in case of perfect prediction, i.e. the oracle scenario, xpre

k is
the optimum resource distribution while ξpre

m is the minimum
achievable gap in the given network. However, due to the
issues discussed above, xpre

k and ξpre
m are not used directly,

but instead, they are implemented as the guidance parameters
to the real time scheduling problem P1.
P1 receives ξpre

m , xpre
k , Snew

m , ∆new
m and rpre

k from P2 and using
(1a),(1b),(1c),(1d), (1e) and (1g), determines the real time
resource allocations, xk[n]. The predicted resource distribution
xpre
k is used as an upper-bound to the real time resource

scheduling, i.e.
xpre
k ≥ xk[n].

In this way, the real time scheduler can make small adjust-
ments on the resource allocations in order to tune with the
errors in prediction, however, it is not possible to fully avoid
from the prediction errors since such a solution would require
not only the errors in the prediction but the affects of these
errors on resource distribution.

C. Anticipating the sharing parameters

As previously detailed, P2 derives the optimum sharing
parameters (Spre

m , ∆pre
m ) based on the predicted channel condi-

tions. On the other hand, depending on the prediction accuracy,
the predicted shares can be very inaccurate, resulting in the
cases where the tenants choose wrong sharing parameters.
Therefore, the update process of the sharing parameters is
build on a weighted approach simmilar to one we applied
in [6]. In line with our past approach, at the beginning of
each new renegotiation interval, the sharing parameters of the
tenants are updated using a feature scaling coefficient (αm),
as shown below:

Snew
m = (1− αm)Spre

m + αmS
old
m , (3)

∆new
m = (1− αm)∆pre

m + αm∆old, (4)

where αm is formalized as:

αm =
|ξm − ξpre

m |
ξm + ξpre

m
. (5)

In the best case scenario which can be outlined as the
case with perfect prediction, the achieved gap will equal to
the predicted gap (ξm = ξpre

m ), pulling αm to zero. In this
case, the sharing parameters are directly equal to the predicted
sharing parameters. On the other hand, in worst case, where the
prediction is totally wrong, the measured gap is much higher
than the predicted gap (ξm >> ξpre

m ), pushing αm to one. In
this scenario, the wrongly predicted sharing parameters are



not considered at all and the scheduler will keep on using the
previous sharing parameters.

D. Active filtering

In the earlier sections, we outlined a scheme how to decrease
the impact of prediction errors with bi-level execution of the
proposed model. However, it is also clear that this bi-level
approach is not sufficient to provide the necessary robustness.
In a competitive market, the business decisions (particularly
the tenants’ incentive to involve in an shared network) are
directly affected by the efficiency of the scheduling algorithm.
Thus, in this section, a simple yet efficient filter approach
is proposed to confine the impacts of prediction errors and
enhance the algorithm’s robustness to the prediction errors.
The proposed filter is formulated as,

F (xpre
k [n], Ek[n]) = xpre

k [n] +
Ek[n]

1 + e−a1,k(Ek[n]−a2,k)
(6)

where xpre
k [n] is the calculated optimum resources for the

predicted rates, Ek[n] is the prediction error, a1,k and a2,k are
filter parameters. In order to calculate the prediction error, we
used the euclidean distance between the predicted achievable
rate and the measured achievable rate, i.e. Ek[n] = |rpre

k [n]−
rk[n]|. Note that in case of perfect prediction, a.k.a. the
oracle scenario, the output of the proposed filter mechanism
is equal to xpre

k [n]. The filter’s sensitivity to the prediction
error depends on a1,k and a2,k. Since the prediction error and
its effects on the resource allocation can vary over time and
the user mix, a1,k and a2,k are chosen to be dynamic. More
specifically, these values are calculated using,

a1,k = µn∈Wm
(Ek), (7)

a2,k =
10

σn∈Wm
(Ek)

, (8)

and are updated at the end of every RI based on the error
observed during the completed RI .

The output of the filter function F (xpre
k [n], Ek[n]) sets an

upper limit to the assignable resources in P1, namely,

F (xpre
k [n], Ek[n], βk[n]) ≥ xk[n]. (9)

Depending on the prediction error (Ek[n]), the assignable
resources vary within xpre

k [n] ≤ xk[n] ≤ 1.

IV. SIMULATION RESULTS

During our simulations, we assume that the proposed model
has been integrated to a base station with a coverage radius of
500 m, and |K| = 12 users are sharing the downlink of this
base station. The set of users (K) is distributed uniformly to
the coverage area and are registered among |M | = 3 tenants
equivalently, namely |Km| = 4. The presented results are
averaged over 50 independent instances and each one of this
instances covers a simulation horizon of 5000 transmission
time intervals (TTIs), i.e. N = 5000 TTIs. Moreover, the
simulation horizon is discritized into time slots with a length
of 1 TTI.

TABLE I
COMPARISON BETWEEN ARIMA AND FFNN IN TERMS OF THEIR

ACCURACY LEVELS AND TIME COMPLEXITIES.

ARIMA FFNN
Time complexity for training process (sec) - 75.03

Time complexity for prediction process (sec) 1.15 0.598
Prediction error for |WP | = 10ms (MAPE) 7.61 % 7,14 %
Prediction error for |WP | = 50ms (MAPE) 160.8 % 216,8 %

Adaptation Yes No

The simulations are set on Matlab 2017a while the proposed
mathematical formulation is run using Gurobi solver [15].
Users movement has been assumed to be in a straight line to-
wards a random direction with the walking speed, i.e. v = 1.5
m/s. The users achievable rate is calculated using the Shannon-
Hartley theorem, i.e. rk[n] = log2(1 + SINRk[n]). For each
user k, the SINR is calculated under constant transmission
power, PTx, and constant inter-cell interference, I0 assump-
tions, using the equation SINRk[n] = |hk[n]|2PTxd−αk /σ2 +
I0 where dk indicates the distance of the user, α is the path loss
exponent and σ2 is the sum of the thermal noise. Moreover, a
frequency-flat fading channel with Rayleigh coefficients, i.e.
hk[n], is assumed to be between the user and the base station.
The maximum Doppler spread is calculated using Fd = vfc/c
where fc indicates the carrier frequency of 2 GHz, c shows
the speed of light and v is the walking speed of 5.4 km/hr.

A. Comparison between different prediction methods

Our previous studies have revealed that a perfect prediction
(i.e. with zero prediction error) can increase the efficiency
of the sharing more than 30%. However, the well-known
inverse proportion between prediction accuracy and the time
complexity challenges the proposed real-time model. More
specifically, in order to have performance improvements as
high as 30%, the prediction accuracy has to be close to the
perfect prediction which requires a complex algorithm that is
impossible to run in real-time on a commercially available
machine. On the other hand, the decrease in the prediction
accuracy can result in efficiency levels lower than the scenario
where the prediction is not implemented (i.e. no prediction).

Therefore, the two considered prediction algorithms are
compared both in terms of their prediction accuracy and their
time complexity. The time complexity of each algorithm is
collected from a commercially available computer equipped
with i7-4510U CPU and 16 GB ram. Following the general
approach in literature, the total time to run the prediction
algorithms is divided into two parts, i.e. the learning time and
the prediction time (c.f. Table I). The considered learning time
is the total duration of building a machine learning model to
perform the predictions, whereas, the prediction time compose
of the total time spent on making the predictions for the
upcoming renegotiation interval. FFNN works in a larger data
set in order to reach a generic model that can be used over
N , while ARIMA produces a local model that can be used
to predict the upcoming RI . Due to its local focus, ARIMA’s
total time complexity is much lower than FFNN’s. In order to



evaluate the accuracy of the prediction algorithm, we used the
well-known mean average percentage error (MAPE) and the
mean square error (MSE) concepts from the literature, that are
calculated using

MAPE(%) =
100

N × |K|
∑
k∈K

∑
n∈N

|rpre
k [n]− rk[n]|

rk[n]
, (10)

MSE =
1

N × |K|
∑
k∈K

∑
n∈N

(rpre
k [n]− rk[n])2. (11)

Table I proves that the efficiency of FFNN for shorter pre-
diction horizon, while ARIMA is more successful for longer
WP . Morever, due to its locality, ARIMA can adapt itself to
the changing correlations over time, whereas, FFNN requires
to be retrained in order to maintain the prediction performance.
Thus, we concluded that ARIMA is more suitable for our
problem.

TABLE II
TO BE ADDED

Scenario (WP ,WL) MAPE (%) MSE
(10,10) 7.61 0.101
(10,50) 7.34 2.14
(10,90) 12.81 0.69
(25,25) 76.64 1.10
(25,50) 29.86 0.84
(25,75) 28.30 0.77
(50,50) 165.9 3.70

Table II outlines the accuracy of ARIMA for different WP

and WL values. Note that in the given simulation scenario,
the correlation window of the achievable rates is 100 TTIs,
therefore, the analysis is limited to the WP ≤ 100 TTIs.
The results underline the importance of WL as it has direct
effect on both MAPE and MSE. Despite the usual approach of
choosing WP +WL = 100 TTIs (i.e. the correlation window),
our analysis showed that for smaller WP , having a relatively
too big WL results in over-fitting and drastically decreases
the accuracy. Moreover the first two columns in Table II have
similar MAPE values while they show a clear differentiation
in MSE. Due to the exponential of the prediction error in (11),
the bigger prediction errors are more visible in (11) compared
to (10), meaning that if two simulations’ MAPE values are
identical, in the one with the smaller MSE the prediction
error will be more uniformly distributed. Our simulations show
that the proposed model performs approximately 3% better
with the usage of |WL| = 50 compared to the case where
|WL| = 10 despite the huge differentiation in terms of MSE.
This indicates that the average value of the error has greater
impact on our algorithm than instantaneous errors.

B. Analysis of robustness to the prediction errors

The performance of the proposed anticipatory framework
strongly depends on the prediction accuracy. In this part, an
analysis of the dependency to the prediction errors and the
effects of using the filtering approach is investigated. Fig. 3
reports the variation of average total utility over all the users

for |M | = 2 with the prediction horizon for three different
scenarios, namely, no prediction, no filter and with filter.
In the no prediction scenario, the reactive model in [6] is
implemented.
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Fig. 3. Comparison of the average achieved utility for different WP lengths
and different scenarios, i.e. no prediction (blue bar marked with “ ? ”), no
filter (orange bar marked with “ + ”) and application of filter (yellow bar
marked with “ † ”)

Regardless of the prediction horizon, the algorithm with
filter implementation performs better than both no prediction
and direct prediction implementations. Moreover, increasing
the prediction horizon (and the RI) decreases the prediction
accuracy which results in lower average achieved utility for the
‘no filter’ scenario. As can be seen in Fig. 3, for both the ‘no
prediction’ and ‘with filter’ scenarios, an increase in the total
average utility is measured in parallel with the RI . This sym-
metric increase indicates that the proposed filter mechanism
can filter out the negative effects of bad prediction accuracy
in the model and exploits the good prediction information.
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Fig. 4. Variation of average achieved utility over |M | with the number of
tenants |M | for a constant network capacity.

Note that in Fig. 3, the differentiation between average
achieved utilities per scenario is very low. This is due to
the fact that with smaller |RI| the advantage of prediction
is being lost as the negotiation platform converges to a real
time negotiation algorithm. As in the extreme case of RI = 1
TTI the two algorithms (i.e. no prediction and with prediction)
performs identical since the resource negotiations are done
per time slot. Fig. 4 analysis the effects of increasing |M |
(and proportionally |K|) on the average achieved utility for



TABLE III
VARIATION OF AVERAGE UTILITY AND TOTAL COST PER TENANT WITH

THE NUMBER OF TENANTS IN SHORT TERM WITHOUT PREDICTION

|M1| → |M2|
(Uk,M1
Uk,M2

)µ ( pM1
pM2

)ε Status

2 → 3 1.1598 3.1820 YES
3 → 4 1.1736 1.6810 YES
4 → 5 1.1901 1.1802 NO

no prediction and with filter cases. In order to have a direct
understanding on the results, RI = WP = 25 TTI is
chosen while WL = 75 TTI. In this scenario, each tenant
serves |Km| = 4 users, thus, the increase in |M | shows the
performance of the algorithm for more crowded networks. The
results show that the advantage of having a prediction will fade
as the network becomes more crowded due to the increase in
the non-elastic users. Therefore, in order to exploit the full
potential of prediction, the network capacity should be parallel
to the network demand.

C. Techno-economic analysis of prediction

In order to analyze the economical impacts of anticipatory
network slicing on the envisioned market model, a comparison
in terms of tenant’s acceptance of the given service quality to
the given costs are investigated using the service acceptance
inequality in [6], i.e.(Uk,M1

Uk,M2

)µ ≤ (pM1

pM2

)σ
. (12)

The tenants are considered to accept the given service from
the given price if (12) holds. Else it is assumed that the tenants
are unlikely to accept the price of service, and consequently
would leave the proposed sharing framework. Table III and
Table IV shows a comparison between two cases where the
prediction is used and not used for WP = 25 TTI. In order to
indicate the cases where (12) holds, we used ‘YES’ and for
the other cases we used ‘NO’.

TABLE IV
VARIATION OF AVERAGE UTILITY AND TOTAL COST PER TENANT WITH

THE NUMBER OF TENANTS IN SHORT TERM WITH FILTER

|M1| → |M2|
(Uk,M1
Uk,M2

)µ ( pM1
pM2

)ε Status

2 → 3 1.2555 2.7378 YES
3 → 4 1.2247 1.6242 YES
4 → 5 1.1815 1.2001 YES

A comparison between these two tables concurs that the
application of anticipation would increase the resource effi-
ciency, allowing tenants to achieve higher average utilities with
relatively lower costs. Moreover it increases the capacity of
the market, and lets the infrastructure provider to serve more
tenants using the same infrastructure.

V. CONCLUSION

In this paper, we have shown that the efficiency of the
network slicing can be improved by integrating prediction
tools to anticipate the varying traffic and channel conditions.

Our investigation has shown that between two popular pre-
diction algorithms in literature, ARIMA is more suitable for
our problem. A novel filter has been used to integrate the
prediction information in order to dynamically filter out the
disadvantages of low prediction accuracy. Numerical results
have underlined the importance of a timely capacity expansion
in order to exploit the full potential of anticipatory network
slicing. Lastly, our mathematical analysis has shown that
the increased resource efficiency via anticipation lets the
infrastructure providers to serve more tenants using the same
infrastructure.
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