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0 Executive Summary  

This is the second research report within work package one Network Anticipation of the ACT5G 

project. The document provides information of the conducted and expected work of early-

stage researcher (ESR) one and two. The document first gives an overview of the focus area 

and research topics. Technical details of the work are then presented by means of research 

paper published or submitted since the previous research report. 
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1 Work Plan and Progress of ESR 1 

The ESR I, Claudia Parera Sotolongo joined the project in May 1st, 2017. Her re-

search activities include the application and development of analytics tools to 

real data coming from mobile radio networks, more specifically data coming 

from network counters, probes and drive tests. By extracting knowledge from 

the aforementioned data sources, the final goal is to anticipate and optimize the 

mobile radio network behaviour. 

The main research direction includes the application of machine learning, more 

specifically deep and transfer learning to a wide variety of problems across the 

different layers of the network. During the period of May 2017 till August 2018, 

the ESR I has been working in a problem related to antenna tilt optimization on 

a real dataset from LTE stations. This work led to one conference paper and one 

article submitted pending of evaluation. The conference paper Transferring 

knowledge for tilt-dependant radio map prediction was presented in WCNC, 

2018 last April. A finalized version of this work Transfer knowledge for tilt-

dependant radio map prediction was submitted as journal article to the JSAC 

special issue on Artificial Intelligence and Machine Learning for Networking 

and Communications and it is under revision. During this period the ESR had 

the opportunity of mastering her skills on topics related to deep and transfer 

learning.  

From September 2018 the ESR I has been working on a new domain with data 

related to the deployment and testing of Virtual Network Functions. This da-

taset is generated by the Nokia proprietary stack. Due to the complexity of the 

software that generates this data, first steps have include getting some prelimi-

nary insight into the data as well as the testbed architecture to evaluate the pos-

sibility of applying transfer learning to this scenario. Current open questions in-

clude evaluating the correlation between KPIs from network and orchestration 

domains as well as cross domain. 
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2 Work Plan and Progress of ESR 2 

ESR2, Cristian Tatino, has focused his research on several performance aspects 

of millimeter-wave (mm-wave) communications. First, he has investigated the 

contributions to the coverage probability given by reflected paths. These, in ac-

cording to the result, can represent feasible alternative paths to the direct one 

when this is blocked. However, reflections are generated usually by obstacle 

that are not the direct control of the telecom operators. Thus, ESR2 has investi-

gated other solutions to avoid communication interruptions.  

A first solution is represented by the multi-connectivity (MC). By using MC 

technology, a UE is able to connect with several millimeter-wave access points 

(mmAPs) simultaneously. In this scenarios, ESR2 has coped with the link 

scheduling problem for a low frequency assisted mm-wave wireless network, 

where a UE establishes simultaneously connections with a 5G low frequency 

base station (5G LB) and possibly several mmAPs. Although, multiple trans-

missions increase the communications reliability, at the same time they con-

sume resources in terms of frequency band, energy, and antennas. For this rea-

son, in this work, it is considered the possibility for a mmAP to be prepared for 

the communication with a UE, but without transmitting. A mmAP can be pre-

pared for the transmission at several levels that correspond to several link 

states, depending on weather the mmAP is transmitting, prepared and not con-

nected. The goal of the link scheduler (network controller, NC) is to set the state 

of several links along a certain time window in order to maximize the network 

throughput. Moreover, the mmAPs can establish a limited amount of connec-

tions because of a power budget constraint that mainly limits the number of 

simultaneous connections. First, the problem is formulated as non-linear binary 

integer optimization problem, then, it is linearized and solved by using a pro-

posed algorithm that is based on a column generation approach. From the re-

sults it is possible to observe that the proposed solution for MC results in signif-

icant improvement of the network throughput with respect to the single 

connectivity case. The work has resulted in a conference paper, accepted for 

presentation and publication by the Resource Allocation, Cooperation and 

Competition in Wireless Networks (RAWNET) workshop of the 16th Interna-

tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and 

Wireless Networks (WiOPT) that will take place in May, 2018. 

Moreover, Cristian Tatino has considered a further solution for increasing the 

reliability in mm-waves; this is the relaying technique that provides an alterna-

tive path to the direct one by using an intermediate node. More precisely, by us-
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ing the knowledge acquired in queuing theory, ESR2 has analyzed the delay 

and the throughput for a relay-assisted mm-wave wireless network. In this 

work Cristian Tatino has analyzed the impact of narrow beams and directional 

transmissions on relaying techniques. Moreover, two transmissions schemes 

have been analyzed: fully directional and broadcast. By using the former, the 

UEs send either a packet to the destination or the relay by using narrow beams. 

Whereas, by using the broadcast transmission, UEs use wider beams, with low-

er beamforming gain, in order to send a packet to both the mmAP and the relay 

in the same timeslot. At first, ESR2 has analyzed the performance of the queue 

at the relay and then the throughput and the delay. The result has shown when 

it is beneficial to use either narrow beams (fully directional) or wider beams 

(broadcast). Furthermore, the numerical evaluation of the analytical analysis 

and the simulations have shown the impact of the beamfoming alignment on 

the network performance. This investigation has resulted to a submitted journal 

paper and in a conference paper, accepted for presentation and publication by 

the Emerging Technologies for 5G and Beyond Wireless and Mobile Network 

(ET5GB) workshop of the IEEE Global Communications Conference 

(Globecom) that will take place in December, 2018.  

As next steps, Cristian Tatino is 1) considering link scheduling problems for 

multi-connectivity with non-perfect prediction, and 2) analyzing the network 

performance of relay-assisted mm-wave wireless networks for several non-

random transmission policies. 
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3 Appendices:  

- Transferring knowledge for tilt-dependant radio map prediction (pub-

lished in IEEE WCNC, 2018) 

- Transfer knowledge for tilt-dependant radio map prediction (under revi-

sion of the IEEE JSAC special issue on Artificial Intelligence and Machine 

Learning for Networking and Communications, 2018) 

- Maximum throughput scheduling for multi-connectivity in millimeter-

wave networks (published in WiOPT Workshops, 2018) 

- Throughput analysis for relay-assisted millimeter-wave wireless net-

works (accepted by IEEE Globecom Workshops, 2018) 
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Abstract—Fifth generation wireless networks (5G) will face
key challenges caused by diverse patterns of traffic demands
and massive deployment of heterogeneous access points. In
order to handle this complexity, machine learning techniques
are expected to play a major role. However, due to the large
space of parameters related to network optimization, collecting
data to train models for all possible network configurations can be
prohibitive. In this paper, we analyze the possibility of performing
a knowledge transfer, in which a machine learning model trained
on a particular network configuration is used to predict a
quantity of interest in a new, unknown setting. We focus on
the tilt-dependent received signal strength maps as quantities of
interest and we analyze two cases where the knowledge acquired
for a particular antenna tilt setting is transferred to (i) a different
tilt configuration of the same antenna or (ii) a different antenna
with the same tilt configuration. Promising results supporting
knowledge transfer are obtained through extensive experiments
conducted using different machine learning models on a real
dataset.

Index Terms—Radio map prediction, antenna tilt, machine
learning, knowledge transfer

I. INTRODUCTION

The fifth generation wireless networks (5G) are expected
to support a series of unique features compared to cur-
rent architectures, including more users, higher data rates,
reduced latency and improved energy efficiency. To reach
these goals, 5G will leverage the availability of dense and
heterogeneous deployments coupled with novel technologies
able to be dynamically managed both in a centralized or
distributed manner. To cope with such a complex scenario,
it is envisioned that machine learning tools will play a major
role in enabling the transition from current mobile networks
to the future 5G architecture [1]. By exploiting the constantly
increasing availability of data from both network devices and
user terminals, such tools will assist network operators in
facing the increasing complexity in the setting of the control
parameters for network optimization, forming the basis for
automatic and smart network management techniques.

Among the many parameters that can be configured at the
base station (BS), one of the most important is the antenna

This work is funded by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement
No. 643002.

tilt, that is the angle formed by the vertical direction of the
antenna with the horizon. Antenna tilt can be realized either
mechanically (by physically inclining the antenna up or down)
or electrically (relying on beamforming techniques that steer
the main beam of the antenna towards a desired vertical
direction), or even as a combination of the two. The antenna
tilt directly impacts on many performance measures of the
cell served by a BS, such as coverage, signal strength, and
inter-cell interference, which in turn determine the quality of
service experienced by the end users.

From an operator perspective, being able to predict such
performance measures without performing extensive trials or
measurement campaigns is of key importance for at least
two reasons: first, extensive measurement campaigns such as
test driving are time consuming and costly. Secondly, even
assuming that measurements can be obtained in a cheap way
(e.g., directly from user terminals through crowdsourcing),
this requires that all possible antenna tilts are tested, which
can easily cause issues on the cell performance and decrease
the perceived quality of service. Therefore, such tests could
be realistically performed only for very short periods and
during off-peak traffic hours, making the idea of obtaining
data measurements from users unfeasible.

Given such difficulties, an option which may be particularly
appealing to network operators is to transfer the knowledge
acquired through a single measurement campaign (e.g., for
a given antenna tilt setting) to a new domain (e.g., a new tilt
setting) without needing to acquire a complete set of additional
measurements. Such a learning paradigm, in which the data
distributions of the training (source) and testing (target) sets
are significantly different, can be seen as an example of
transfer learning and has received increasing attention in the
last few years [2].

In this paper, we study the possibility of performing such a
knowledge transfer for the task of predicting the radio signal
strength map of a particular BS cell. We start from a dataset of
signal strength measurements obtained from real-life long term
evolution (LTE) base stations and analyze the performance of
several machine learning algorithms in two different scenarios
where the knowledge acquired for a particular antenna tilt
setting is transferred to (i) a different tilt configuration of the
same antenna or (ii) a different antenna with the same tilt



configuration.
We show through extensive experiments that transferring

knowledge allows for promising prediction performance and
that the domain similarity (the difference between training and
testing data distributions) plays a role in selecting the machine
learning technique that obtains the best performance.

The rest of this paper is organized as it follows: Section II
reviews related works in the area of network planning and
optimization, with particular focus on those works dealing
with antenna tilt. Section III describes in details the scenario
under consideration, while Section IV focuses on the machine
learning tools used for this work. Experiments and discussion
on the obtained results are reported in Section V. Finally,
Section VI concludes the paper and describes future work
directions.

II. RELATED WORK

Recent works have studied the importance of antenna tilt in
the context of network planning and optimization problems.

The literature can be broadly categorized in two areas: (i)
network optimization through antenna tilt adjustment and (ii)
prediction of tilt-dependent radio maps. With reference to the
former area, in [3], a method for finding the optimal antenna
tilts in a heterogeneous network is proposed. The method is
built on a reinforcement learning algorithm which adapts the
antenna tilts to the specific network load conditions in order to
maximize the user throughput fairness and the overall energy
efficiency. Results on simulated data demonstrate that the
proposed method outperforms a fixed strategy for the antenna
tilts. A similar approach is taken by the authors of [4], where
reinforcement learning is again used to optimize the antenna
tilts, this time with the objective of maximizing the overall
data rate of the network. Finally, the work in [5] proposes a
general machine learning-based network planning tool. The
flexibility of the approach is demonstrated with examples,
including readjusting the antenna tilts to compensate for loss
of service caused by faulty cells.

As for the second area of works, the work in [6] proposes
a geometrical-based extension to different traditional log-
distance path loss models (Okumura-Hata, Walfisch-Ikegami)
to take into account the antenna tilt during the prediction of the
signal strength at a given distance from the base station. The
proposed extension, named vertical gain correction (VGC), is
calculated directly from the antenna patterns provided by the
manufacturer and is added to the signal strength estimated
by the path loss models to compensate for the antenna tilt.
Experimental results on data collected from LTE base stations
show that the VGC improves the signal strength prediction
performance compared to traditional models. Such method is
then used to compute predictions that are used in a following
work [7] to optimize the antenna tilts in order to maximize the
capacity and coverage of a simulated LTE network. The pre-
dictive performance are reported to be lower for locations close
to the antenna. Similarly, the work in [8] investigates the effect
of antenna tilt on radio maps, comparing the path loss models
developed by 3GPP for different propagation environments [9]

with the results obtained by a ray tracing tool able to take
into account antenna tilts. Results demonstrate that changing
antenna tilt has a significant impact on the shadowing map,
therefore calling for a rethinking of currently available 3GPP
propagation models and assumptions, which apply identical
shadowing map independently from the antenna tilt.

Our work shares the same research objectives of this second
class with one fundamental novelty: in all the aforementioned
works, the domain of the data used for predicting the signal
strength is similar (if not the same) to the target domain; as an
example, the signal strength radio map of an antenna under
a given tilting configuration is interpolated or predicted out
of available signal strength samples collected for the same
antenna in the same tilting configuration. We also analyze the
cases where the performance of target antenna configuration
is predicted by using training dataset collected under different
configurations or even referring to a totally different antenna.

III. PROBLEM STATEMENT AND BACKGROUND

In this paper we address the following problem in mobile
radio networks: ”how to predict the performance of a given
network configuration by leveraging performance information
of diverse network configurations”. The performance measure
that we target here is the received signal strength in the
downlink and the network configuration domains include the
tilting configuration of the emitting base stations.

Assume K base stations are deployed in the area under anal-
ysis. Each base station can work in H different tilt configura-
tions, indexed by h = 1, . . . ,H . Let sk,h(xi), be the measured
signal strength received at location xi = {yi, zi}, from the k-
th base station when running the h-th tilt configuration, where
yi and zi indicate the latitude and the longitude of the i-th
location, respectively. Let Mh

k be the set of location indexes
where measurements for base station k running configuration
h have been taken.

The problem at hand can be defined as follows: given{
sk,h(xi) : i ∈Mh

k

}
, estimate the unknown signal strength

ŝm,n(xj) at the same or different locations, xj , under di-
verse and different network configuration domains, that is xj ,
j ∈Mn

m with m 6= k and/or n 6= h.
The dataset used in this work is composed of reference

signal received power (RSRP) outdoor measurements collected
in Espoo, Finland in November 2016 out of two LTE com-
mercial base stations with three different 120◦ sectors each
and operating at 2.6 GHz (see Fig. 1 reporting the positions
of the two antennas and the representation of the target area).
Out of the two antennas, we focus here on three physical cell
identifiers (PCIs) which will be referred to as PCI 1, 2 and 3.
PCIs 1 and 2 refer to two different sectors of the same base
stations, whereas PCI 3 is a sector of a totally different base
station.

The RSRP measurements were collected using an Android
device equipped with an application capable of storing the
RSRP from all the received cells, the cell identifier, the GPS
position of the device and the timestamp. Such measurements
were carried out at a frequency of 1 Hz while walking along



PCI total tilt setting (in degrees)
1 3,5,6,7,9
2 3,5,6,7,9
3 5,6,9

TABLE I: Available down-tilt configurations.

Fig. 1: Map showing the base stations position and the PCIs
(sectors) in the reference dataset.

a route of about 8 km within each cell coverage area, with a
minimum and maximum distance from the base station of 30
m and 900 m respectively. The testing paths were designed to
include varied propagation conditions: university campus with
two- or three-story buildings, residential areas, parking lots,
lower density rural and open area with different types of roads
(i.e. pedestrian, cycling and main roads). Each testing path
was walked once for each electronic tilt setting. The different
tilt configurations are shown in Table I. The receiver was
placed at the height of 1.5 m and always kept with the same
orientation. The weather conditions were stable and cloudy and
the road was covered by snow for most of the measurement
campaign. In total, about 3 · 105 RSRP measurements were
obtained. Each observation contains the following fields: the
measurement position, the RSRP value, the corresponding PCI
and the timestamp. The raw dataset was pre-processed to
remove outliers and corrupted samples: as an example, at the
beginning of each experiment the GPS receiver takes some
time to set up, recording incorrect position. Moreover, the
RSRP values are averaged over grid segmentation of the map,
with the grid size of 20 m × 20 m. After the pre-processing
steps, the dataset was reduced to about 3.5 · 103 observations
per PCI and per tilt configuration, for a total of about 5 · 104

measurements.

IV. PREDICTION APPROACHES

In this section, we describe two different prediction ap-
proaches. The first one leverages spatial information only
(latitude and longitude) to predict the signal strength; con-
versely, the second approach adopts a larger set of features to
capture path loss and propagation properties.

A. Location-Only Approaches

Based on the strong spatial correlation between signal
strength and location, three different techniques have been
used:

Baseline: The Baseline (B) method takes as the predicted
value of signal strength for a target position x the signal
strength of the closest point xi available in the training dataset
M. This method is essentially k-nearest neighbors (k-NN)
with k = 1. Formally,

ŝ(x) = s(xi), xi = arg min
xi,i∈M

d(x,xi). (1)

Adjusted Baseline: As proposed in [6], the Baseline method
can be extended by leveraging a priori information on the ra-
diation pattern of the reference antenna. Formally, the Adjusted
Baseline (AB) predicts the value of the signal strength as:

ŝ(x) = s(xi)+∆H(x,xi)+∆V (x,xi), xi = arg min
xi,i∈M

d(x,xi),

(2)
being ∆H(x,xi) and ∆V (x,xi) the difference of the antenna
horizontal and vertical gain respectively in the directions
towards the target position x and the closest known position
xi. Formally,

∆H(x,xi) = η(x)− η(xi) and ∆V (x,xi) = γ(x)− γ(xi),

where η() and γ() are the horizontal and vertical gain of the
antenna respectively.

k-Nearest Neighbors with Inverse Distance Weighting: This
technique extends the classical nearest neighbor approaches
[10] and predicts the signal at an unknown target location
as a weighted average of the signals at the k closest known
locations:

ŝ(x) =
∑

i∈M(x)

wis(xi). (3)

The set M(x) includes the indexes of the k locations which
are geographically closest to the target unknown location x.
Weights wi are chosen to be inversely proportional to the
distance d(xi,x) and normalized to sum to unity, that is:

wi =
d(xi,x)−1∑

j∈M(x) d(xj ,x)−1
. (4)

B. Geometric-aware Approaches

Location-only approaches tend to produce good results
under ideal conditions, when the available labeled dataset is
rich enough and the reference area is sampled uniformly.
On the other hand, when the available dataset is sparsely
sampled in space, then the location-only approaches may fail.
Therefore, we have resorted to more complex prediction mod-
els leveraging additional features besides location. Namely,
being xA the antenna location and x the target position, the
following set of features is considered for the prediction task
(see Figure 2):
• the physical distance between the antenna and the mea-

surement position, d(x,xA);
• the relative elevation angle between the down-tilt of

the antenna and the vertical direction from the antenna
emitting element to the measurement position, defined as:

δ1 = 90◦ − (αA + αE), (5)
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Fig. 2: Relative angles in the vertical (left) and horizontal
(right) planes between the antenna pointing direction and the
direction towards the test position x.

being αA the antenna down-tilt (mechanical plus elec-
trical) and αE the angle at which the antenna “sees”the
target position;

• the relative azimuth between the horizontal orientation of
the antenna and the horizontal direction to the measure-
ment position defined as:

δ2 = βA − βE , (6)

being βA the horizontal orientation of the antenna and
βE the horizontal orientation of the target position with
respect to the antenna position.

• the tilt configuration of the antenna, αA.

Each signal strength sample in the training dataset is there-
fore associated to a feature vector X = {1, d, δ1, δ2, αA}T ,
after applying the logarithm transformation to d, given that
RSRP samples are measured in dBm.

Multivariate Linear Regression: A linear model can be
trained to relate the measured signal strength in a position
to the corresponding feature vector. Given a target position x,
the predicted signal strength is modeled as:

ŝ(x) = ΘTX ,

being Θ the parameter vector of the linear model.
Random Forest: Random forest (RF) is one of the ensemble

methods used for classification and regression purposes. The
algorithm introduced by Ho [11] in 1995, and later extended
by Breiman and Cutler [12], uses the idea of bagging to
perform predictions. During the process several trees are
grown independently using different bootstrapped samples of
the data and majority voting or averaging are used for the final
prediction. In contrast to traditional trees, the variable used to
perform the split in each node is chosen randomly from a set
of predictors [12]. RF is known to sometimes outperform other
machine learning techniques such as Neural Networks due to
its resistance to overfitting [13].

XGBoost: Boosting is a technique that can be used to
improve the performance of a generic machine learning al-
gorithm, by iteratively tuning a model each time giving more
importance to mispredicted test samples [14]. Here we use
a particular version of boosting called XGBoost [15], which
unifies several ideas: Gradient Boosting, regularization to
avoid over fitting, column sampling taken from RF and sparse
data manipulation.

V. EXPERIMENTS

Inspired by the concept of transfer learning [2], we evaluate
here the performance of different prediction approaches when
varying the degree of similarity of the datasets (domains) used
for training and testing. The quantitative measure to capture
domain similarity used in the analysis is the Kullback-Leibler
divergence index (KL) [16] which measures the relative en-
tropy of a given probability distribution with respect to another
one. Namely, given two reference datasets, one used for
training and one used for testing, we derive the KL divergence
indexes of the probability distributions of the logarithm of the
distance (d), relative angle (δ1) and relative azimuth (δ2) of
the two datasets. In details, the range of distances, relative
angles and relative azimuth contained in the two datasets was
uniformly quantized to k intervals, further deriving the related
discrete probability distributions. For example, the symmetric
KL divergence index of the distance probability distributions
in one training and one testing dataset is given by:

DKL(d) =

k∑
i=1

P
(tr)
d (i) log

P
(tr)
d (i)

P
(te)
d (i)

+

k∑
i=1

P
(te)
d (i) log

P
(te)
d (i)

P
(tr)
d (i)

,

(7)
where P

(tr)
d (i) and P

(te)
d (i) with i = 1 . . . k defining the

discrete probability distributions of the distance in the training
and testing dataset respectively. Similar definitions hold for
the KL divergence indexes related to the relative angle, δ1
and relative azimuth δ2. Finally, to give a more succinct
representation of domain similarity, we introduce the domain
distance measure (DD) by summing the three indexes together,
that is:

DD = DKL(d) +DKL(δ1) +DKL(δ2). (8)

Prediction quality is assessed through the mean absolute
error (MAE) and the mean absolute percentage error (MAPE),
defined in Eq. (9), Eq. (10), respectively, where n is the
number of target positions in the testing dataset.

MAE(s, ŝ) =
1

n

n−1∑
i=0

|si − ŝi| (9)

MAPE =
100

n

n−1∑
i=0

∣∣∣∣si − ŝisi

∣∣∣∣ . (10)

A. Tilt-to-Tilt Knowledge Transfer

In Tilt-to-Tilt knowledge transfer, we use a dataset obtained
under a given tilt setting to predict the performance of the same
antenna under a different tilt configuration. Table II reports
the results obtained by the different prediction approaches
described in Section IV when considering PCI 1 and different
combinations for the training and testing tilt conditions. The
text in the table header explains the knowledge transfer in-
volved in the experiment: as an example, the first two columns
(2→3) refer to the case where the training set was obtained
with an antenna tilt of 2 degrees and the tilt configuration for
the test set was 3 degrees.



Tilt 2 ->Tilt 3 Tilt 4 ->Tilt 3 Tilt 6 ->Tilt 3
DD
0.21

DD
0.55

DD
2.58

MAE MAPE% MAE MAPE% MAE MAPE%
B 4.02 4.03 5.27 5.23 7.15 7.31

AB 4.45 4.47 7.49 7.64 11.03 10.86
k-NN 3.9 3.92 5.26 5.19 6.69 6.83
LR 7.75 8.2 7.6 8.1 8.15 8.83
RF 3.89 4.11 5.41 5.38 6.06 6.02

XGB 4.33 4.41 4.68 4.89 6.25 6.59

TABLE II: Prediction performance of different algorithms
under tilt-to-tilt knowledge transfer for reference PCI 1.

From the results in Table II, we can make the following
observations.

• The prediction error is impacted by the training and
test domain distance. As the domain distance increases,
the prediction performance decreases for all tested algo-
rithms.

• Notably, location-only approaches (first three rows in
Table II) and geometric-aware prediction approaches (last
three rows) perform similarly when domain distance is
small, whereas geometric-aware approaches have better
performance when the domain distance increases. This is
because, geometric-aware approaches better capture the
physical properties of channel propagation, thus being
more robust against the cross-domain missing informa-
tion.

• RF generally provides a good prediction performance,
regardless of the domain difference.

Similar results obtained for other PCIs are not reported here
for the sake of brevity.

To further investigate the impact of the domain distance
measure, we have considered the cases where the training
dataset is integrated with samples taken from the test domain.
Figure 3 refers to the cases where increasing percentages of
the training dataset samples (tilt configuration 6) are replaced
by samples from the testing domain (tilt configuration 3).
Sampling is performed randomly and results are averaged over
10 different trials. Fig. 3a and Fig. 3b report the value of the
Domain Distance measure and the MAPE when varying the
percentage of testing samples added to the training datasets.
All tested methods show decreasing prediction error as the
distance between domains decreases.

B. PCI-to-PCI Knowledge Transfer

In case of PCI-to-PCI knowledge transfer, a dataset referring
to one antenna and a given tilt configuration is used to train
the models to predict the signal strength of another antenna
in the same tilt configuration. Table III reports the same
information as Table II when training and test datasets refer
to different antennas (PCIs). In general, the prediction error
is higher with respect to the case of Tilt-to-Tilt knowledge
transfer as training and test datasets are more dissimilar. As
already observed in case of Tilt-to-Tilt knowledge transfer, the
error is smaller when the domain difference is smaller for all
the tested algorithms.

(a) Domain Distance (DD)

(b) MAPE

Fig. 3: Relationship between Domain Distance and MAPE (a),
(b): training on tilt 6, testing on tilt 3 for PCI 1.

PCI 1 ->PCI 2 PCI 3 ->PCI 2
DD
1.89

DD
1.76

MAE MAPE% MAE MAPE%
B 8.41 8.63 10.27 11.09

AB 8.41 8.63 10.27 11.09
k-NN 8.2 8.43 10.27 11.08
LR 11.39 11.21 8.53 8.95
RF 11.37 11.2 8.58 8.85

XGB 11.06 10.97 8.88 9.02

TABLE III: Prediction performance of different algorithms
under PCI-to-PCI knowledge transfer for reference tilt 2.

The same strategy of taking samples of the testing data to
train the model can be applied when transferring knowledge
from PCI to PCI. Figures 4a and 4b report the value of the
Domain Distance measure and the average prediction error
when varying the percentage of samples from the testing
domain (PCI 2) added to the training datasets (PCI 1). Figures
4c and 4d report the same graphs for the case of training over
PCI 3 and testing over PCI 2. In both cases the average error
decreases sharply when adding 20% of the testing dataset to
the training dataset. Notably, the prediction performance levels
off and does not improve much when going beyond 20%.

VI. CONCLUSIONS

In this paper we addressed the problem of predicting
the signal strength in the downlink of a real LTE network
where the antennas can be tuned to operate with different
tilting antenna configurations. Different prediction approaches



(a) (b)

(c) (d)

Fig. 4: DD vs MAPE. (a),(b): training on PCI 1, testing on PCI 2. (c),(d): training on PCI 3, testing on PCI 2 at tilt 2.

were considered with increasing complexity, starting from
models/approaches only leveraging location information to
predict the signal strength up to models/approaches based
on more refined features related to propagation and antenna
configuration. As opposed to other works in the field of
radio map inference, we studied the quality of prediction of
the aforementioned approaches when the datasets used for
training and testing have different statistical characteristics.
We observed that the performance of the predictive models is
highly dependent on the difference between data distributions
of the training and testing domain. Thus, analyzing domain
similarity plays a crucial role in selecting the best performing
model. Furthermore, two approaches are applied to further
reduce the domain difference: (i) choosing the training set
obtained from a tilt setting with higher similarity to the testing
domain, and (ii) adding to the training set a limited number
of samples from the testing domain. Future work will analyze
possible strategies to achieve good tradeoff between improving
prediction performance and reducing measuring effort for
cross-domain data collection.
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Abstract

Machine learning will play a major role in handling the complexity of fifth generation wireless

networks by supporting and augmenting network management and orchestration capabilities. However,

due to the large amount of parameters that can be used for network optimization, collecting labeled

data to train models for all possible network configurations can be prohibitive. In this work, we explore

the applicability of transfer learning techniques for radio map prediction. Namely, we analyze the

case in which the knowledge acquired for a given antenna tilt setting is transferred to a different tilt

configuration of the same antenna in order to predict the signal strength map of the new, unknown

setting. We test our algorithm in two different scenarios: (i) where training data is obtained from

real measurements, and (ii) where training data is artificially generated. In both cases we evaluate the

performance against standard benchmark machine learning techniques. The experimental results show

that the proposed transfer learning approach achieves notable prediction accuracy with a mean absolute

percentage error below 5%. Furthermore, when lacking real measurements, our approach still achieves

comparable performance by substituting almost 80% of the training samples with artificially generated

data.
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Radio map prediction, antenna tilt, transfer learning, artificial data generation.
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I. INTRODUCTION

Fifth generation wireless networks (5G) are expected to enhance a series of features present

in current architectures. Such enhancements include: more users, higher data rates, reduced

latency and improved energy efficiency. To achieve this, 5G leverages the availability of dense

and heterogeneous deployments coupled with novel technologies, which can be dynamically

managed in either a centralized or distributed manner. To cope with such a complex scenario, it

is envisaged that machine learning tools will play a major role in enabling the transition from

current mobile networks to future 5G architectures [2]. Data from both network devices and user

terminals is increasing in availability. By exploiting this, machine learning tools will be able to

assist network operators in dealing with the increasing complexity of configuring parameters

for network optimization; thus, forming the basis for automatic and smart network management

techniques.

Among the manifold parameters that can be configured at the base station (BS), one of

the most important is the antenna tilt, which is the angle formed by the vertical direction in

which the antenna is facing and the horizon. Antenna tilt can be controlled either mechanically

(by physically inclining the antenna up or down) or electronically (relying on beamforming

techniques that steer the main beam of the antenna towards a desired vertical direction), or even

by a combination of the two. The antenna tilt directly impacts the performance measures of a

cell served by a BS: network coverage, signal strength and inter-cell interference. These factors

determine the quality of service experienced by the end users.

From an operator’s perspective, being able to predict such performance measures without

carrying out extensive trials or measurement campaigns is of key importance for two reasons:

firstly, extensive measurement campaigns, such as test driving, are time consuming and costly.

Secondly, even if we assume that measurements can be obtained inexpensively (e.g., directly

from user terminals through crowd-sourcing), testing all possible antenna tilts is still required.

This can easily impact cell performance and decrease the quality of service. Realistically, such

tests could be performed for only very short periods of time, and during off-peak traffic hours.

Obtaining data in this way is therefore infeasible.

Given such difficulties, a solution which may be particularly appealing to network operators is

transferring the knowledge acquired from a single measurement campaign (for a given antenna
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tilt setting) to a new domain (a new tilt setting) without needing to acquire a complete set of

additional measurements. In this case, the data distributions of the training (source) and testing

(target) sets are different. Therefore, we formalize and solve this problem via transfer learning,

a paradigm that has received increased attention in the last few years [3].

In this paper, we study the possibility of performing transfer learning for the task of predicting

the radio signal strength map of a particular BS. We start from a dataset of signal strength

measurements collected from real-life, commercial, long term evolution (LTE) BSs and analyze

the performance of a transfer learning approach based on a deep neural network, where a domain

is defined as the knowledge acquired for a particular antenna tilt setting. This is then transferred

to a different domain, i.e., a different tilt configuration of the same antenna. As benchmark, we

compare the prediction performance of our proposed method against the performance of standard

machine learning techniques when applied to the same problem. The performance evaluation is

carried out in two different scenarios: (i) the data chosen for training is only obtained from real

measurements and (ii) the training data is artificially generated.

In summary, the main contributions of this paper are as follows:

• We propose a transfer learning framework based on a deep neural network for tilt-dependent

radio map prediction. We evaluate its prediction performance by comparison to standard

machine learning approaches. The proposed approach is shown to achieve notable prediction

accuracy and it is stable when encountering differences between the training domain and

the testing domain.

• Our analysis shows that, decreasing the amount of real measurements taken from the testing

domain, the prediction performance does not decrease significantly. This being the case, we

propose a method to quantify the minimum amount of real measurements required during

the training phase; while keeping a balance between prediction performance and the amount

of labeled data required from the target domain.

• We test our approach using artificially generated data as source domain. We show that

by using transfer learning and artificially generated data, we can significantly decrease the

amount of labeled data required during the training phase, without affecting the prediction

performance.

• We provide a method to generate data artificially at no cost for the operator.

The rest of this paper is organized as follows: Section II reviews related work in the area of
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network planning and optimization, with particular focus on those works dealing with antenna

tilt. It further reviews the state of the art of transfer learning, and its applications in the area

of network planning and optimization. Section III describes in details the considered scenario

as well as preliminary data collection and data preprocessing steps. Section IV focuses on the

machine learning tools used for this work. Experiments and discussion of the obtained results,

with special emphasis on the use of artificial data, are reported in Section V. Finally, Section VI

concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly review the works on antenna tilt-dependent radio map prediction,

introduce some background information on transfer learning, and present some applications of

transfer learning techniques to wireless networks.

A. Tilt-Dependent Radio Map Prediction

Tilt-dependent radio map prediction plays a crucial role in the context of network planning

and proactive network optimization [4]. The predicted propagation condition can be exploited

for a reliable decision making process to dynamically optimize antenna tilts in a time-varying

network environment [4], [5]. Although radio map prediction has been extensively studied [6], its

dependence on antenna tilt has been investigated only in few works. The authors in [7] propose a

geometrical-based extension to various traditional log-distance path loss models (Okumura-Hata,

Walfisch-Ikegami) to take into account the antenna tilt during the prediction of the signal strength

at a given distance from the BS. The proposed extension, named vertical gain correction (VGC),

is calculated directly from the antenna patterns provided by the manufacturer and is added to the

signal strength estimated by the path loss models to compensate for the antenna tilt. Experimental

results on data collected from LTE BSs show that the VGC improves the performance of signal

strength prediction compared to traditional models. Similarly, the work in [8] investigates the

effect of antenna tilt on radio maps, comparing the path loss models developed by 3rd generation

partnership project (3GPP) for different propagation environments [9] with the results obtained

by a ray tracing tool able to take into account antenna tilts. Results demonstrate that changing

antenna tilt has a significant impact on the shadowing map, therefore calling for a rethinking
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of currently available 3GPP propagation models and assumptions, which apply an identical

shadowing map independently from the antenna tilt.

B. Overview of Transfer Learning

Traditional machine learning algorithms work under the assumptions that training and testing

data are taken from the same distribution and have the same feature space. However, in real

world applications these assumptions do not always hold. Firstly, the data distribution may not

be static, but vary over time, making it difficult to apply a trained model to a new scenario at a

different time period. Secondly, training and testing data could also differ in terms of geographic

location, or the equipment used for recording the measurements (e.g., a different mobile device).

In such cases, transfer learning is a promising approach for exploiting and sharing knowledge

among different domains.

Transfer learning extracts knowledge from one or more source tasks and applies it to a target

task; allowing the domains and tasks to be different. In this paper, a domain D := {X , P (X)}

consists of a feature space X and a marginal probability distribution P (X) for X ∈ X , and a

task T := {Y , f(·)} consists of a label space Y and an objective predictive function f(·). From

a probabilistic point of view, f(·) can be written as P (Y |X) for Y ∈ Y and X ∈ X . Formally,

the definition of transfer is given as follows.

Definition 1 (Transfer Learning [3]). Given a source domain DS and learning task TS , a target

domain DT and learning task TT , transfer learning aims to improve the learning of the target

predictive function fT (·) in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

Three major works [3], [10], [11] review the state of the art of transfer learning in classification,

regression, unsupervised and reinforcement learning. When dealing with a transfer learning

problem, the main questions to answer are: what to transfer, how to transfer and when to

transfer. The question of when to transfer is mainly related to the issue of avoiding negative

transfer, which is when transfer learning has a negative impact on target learning. The literature

is primarily focused on the first two questions. For the purpose of studying what to transfer, we

will use to the categorization done by [3], where transfer learning can be divided into:

• Inductive: Different source and target tasks.
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• Transductive: Similar source and target tasks but different source and target domains.

• Unsupervised: Different source and target tasks and different (but related) source and target

domains.

To answer the question how to transfer, the most common transfer learning approaches are:

• Instance transfer: It can be applied to inductive and transductive learning. In this approach,

labeled samples in the source domain are reweighted and used in the target domain [12],

[13], [14].

• Feature transfer: It is applied to inductive and transductive learning. It aims at finding a

“good” feature representation that can minimize the domain difference, as proposed in [15],

[16].

• Parameter transfer: It is mostly applied to solve inductive and transductive transfer learning

problems. It works under the assumption that individual models for related tasks share

parameters or a combination of hyperparameters [17], [18].

• Relational knowledge transfer: It is mostly used to solve inductive transfer learning prob-

lems. It is applied to problems where there is some kind of relation in the data (e.g. network

or social network data) [19], [20].

C. Applications of Transfer Learning

Some of the areas where transfer learning has been successfully applied are computer vision,

natural language processing and speech recognition [3]. Due to recent advances in the field of

deep learning, recent approaches combine deep and transfer learning. For instance, in [21] mid-

level image representations learned with convolutional neural network (CNN) are transferred

to other visual recognition tasks. The same idea is followed in [22] for character recognition

from Latin to Chinese. However, the applications of transfer learning in the field of wireless and

mobile networks are still limited. Work has been done for localization by transferring knowledge

across devices, time and space via hidden Markov models (HMMs) in [23], [24], [25]. More

recently, transfer learning has been applied to caching [26], resources optimization [27], and

fault classification [28]. The former two use feature transfer frameworks based on collaborative

filtering and Q-learning, respectively, while the latter applies instance transfer.
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D. Motivation of Our Study

Our work shares the same research objectives of the work on tilt-dependent radio map

prediction (Section II-A), but with one fundamental difference: in all the aforementioned works

the domain of the data used for predicting the signal strength is similar (or even the same) as

the target domain. For example, the signal strength radio map of an antenna under a given tilting

configuration is interpolated or predicted by using available signal strength samples collected

for the same antenna in the same tilting configuration. Instead, we analyze the case where

the performance of the target antenna configuration is predicted using training data related to

a different tilt configuration. In our previous work [1], we have investigated the dependency

between the transferability of the knowledge and the domain difference, when considering the

task of tilt-dependent radio map prediction and by using standard machine learning tools. In this

work, we aim to solve a similar problem, but with improved performance, by applying transfer

learning and exploiting different data sources as training domain.

From the point of view of transfer learning (Section II-B), our work mainly falls into the

category of transductive learning (TS = TT and DS 6= DT ), when using real measurements for

training (Section V-A). However, it is closer to inductive learning (TS 6= TT ), when exploiting

artificially generated data (Section V-B). Furthermore, our solution is inspired by the feature

transfer and parameter transfer approaches introduced in [21]. The authors propose to extract

some internal layers from a CNN, trained with sufficient data collected from the source domain.

They add an adaptation layer to correct the difference between distributions in the source and

target domain. The resulting network is finally trained with a limited amount of data in the

target domain. However, unlike the approach proposed in [21], we do not use a CNN, due to

the scarcity of collected data. Instead, we take the internal layers of a fully connected feed-

forward neural network (FFN), trained in a given tilt configuration (source domain), and add a

new layer. We retrain the final network on a new tilt configuration (target domain). To exploit

parameter transfer, we assume that different domains (tilt configurations of the same antenna)

share the same combination of hyperparameters (same neural network architecture). In addition,

we evaluate the suitability of our approach when using artificially generated data as source

domain and quantify the minimum amount of labeled data required from the target domain to

carry out predictions. To the best of our knowledge, this is the first work using neural networks
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for feature transfer as well as parameter transfer in the area of wireless and mobile networks.

III. PROBLEM STATEMENT AND DATASET

In this paper, we address the following problem in mobile radio networks: “how to predict

the performance of a given network configuration by leveraging performance information of

different network configurations”. The performance measure that we target is the received signal

strength in the downlink. The network configuration domains include the tilting configurations

of the transmitting BSs.

We consider a BS that can work in H different tilt configurations, indexed by h = 1, . . . , H .

Let sh(xi) be the measured signal strength received at location xi = {yi, zi} when the h-th tilt

configuration is selected at the BS, where yi and zi indicate the latitude and the longitude of

the i-th location, respectively. Let Mh be the set of location indexes where measurements have

been taken with configuration h.

The problem at hand can be defined as follows: given {sh(xi) : i ∈Mh}, estimate the un-

known signal strength ŝn(xj) at the same or different locations, xj , with j ∈Mn, under different

network configuration domains, n 6= h.

A. Data Collection

The dataset used in this work is composed of reference signal received power (RSRP) outdoor

measurements collected in Espoo, Finland, in November 2016 from two commercial LTE BSs

with three different 120◦ sectors each and operating at 2.6 GHz (see Figure 1 reporting the

positions of the two antennas and the representation of the target area). Namely, the measurements

are collected from three different physical cell identifiers (PCIs), which will be referred to as

PCI 1, 2 and 3. PCIs 1 and 2 refer to two different sectors of the same base stations, whereas

PCI 3 is a sector of a totally different base station.

The RSRP measurements were collected using an Android device equipped with an application

capable of storing the RSRP from all the received cells, the cell identifier, the global positioning

system (GPS) position of the device and the timestamp. Such measurements were carried out at

a frequency of 1 Hz while walking along routes of 8 km within each cell coverage area, with

a minimum and maximum distance from the BS of 30 m and 900 m, respectively. By design,

the testing paths were planned to include different propagation conditions: university campus
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Fig. 1: Map showing the BS positions and the PCIs (sectors) in the reference dataset

PCI Electronic tilt setting (in degrees)

1 0, 2, 3, 4, 6

2 0, 2, 3, 6

3 2, 3, 6

TABLE I: Available down-tilt configurations

with two- or three-story buildings, residential areas, parking lots, lower density rural and open

area with different types of roads (e.g., pedestrian, cycling and main roads). Each testing path

was walked once for each electronic tilt setting. The different tilt configurations are shown in

Table I. The receiver was placed at the height of 1.5 m and always kept at the same orientation.

The weather conditions were stable and cloudy and the route was covered by snow for most of

the measurement campaign.

B. Data Preprocessing

In total, about 3 · 105 RSRP measurements were obtained. Each observation contains the

following fields:

• Measurement position (latitude and longitude coordinates)

• RSRP value (downlink signal strength)

• PCI (physical cell identifier)

• Timestamp (date and time)

The raw dataset was preprocessed to remove corrupted samples: for example, at the beginning

of each experiment the GPS receiver requires some initialization time during which position
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is recorded incorrectly. Moreover, we overlaid the considered area with a grid. For each grid

element of size 20 m × 20 m, we replaced the RSRP values with their average. After the

preprocessing steps, the reduced dataset consisted of ~3.5 · 103 observations per PCI and per tilt

configuration, for a total of ~5 · 104 measurements.

In our previous work [1], we analyze the transferability across different tilt settings of the

same PCI as well as the transferability across different PCIs. In particular, we show that the

transferability within the same PCI is much stronger than the transferability across different

PCIs. Therefore, we focus hereafter on the task of transferring the knowledge from one tilt

configuration to another within the same PCI, namely PCI 1. Figure 2 shows a representation

of the data collected for different tilt configurations of PCI 1. Figures 2a, 2c, 2e show RSRP

values over the considered geographic area, when the antenna was tilted at 2, 3 and 6 degrees,

respectively. It can be observed that the spatial distribution of the data follows a similar pattern

for different tilt configurations of PCI 1. For example, points located in the main direction of the

antenna have higher signal strength values than the rest of the points. In addition, points closer

to the antenna also follow a similar pattern, while points far apart have lower RSRP values.

Figures 2b, 2d, 2f show the distribution of the data for different tilt configurations and different

features (azimuth, distance and RSRP). We observe some similarities between data collected from

different tilt configurations. Intuitively, there is a relationship between the data distributions of

different tilt configurations (source and target domains). The distance and azimuth distributions

are slightly left-skewed in all cases. However, in our case, the data does not come from the

same distribution, violating the main assumption of traditional machine learning algorithms.

For example, the azimuth distribution for a greater tilt value (Figure 2f) has a lower standard

deviation than the distributions for lower tilt values (Figures 2b and 2d).

IV. PREDICTION APPROACHES

In this section, we describe our proposed approach for prediction of tilt-dependent radio map

as well as the baseline approach used for comparison. Given the antenna location xA, let x and h

be the target position and the configured antenna tilt, respectively. The following set of features,

derived from (x, h) and shown in Figure 3, is considered for the prediction task:

• the tilt configuration of the antenna, αA := h

• the physical distance between the antenna and the measurement position, d(x) := d(x,xA)
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(a) Radio map: PCI 1, Tilt 2 (b) Data distribution: PCI 1, Tilt 2

(c) Radio map: PCI 1, Tilt 3 (d) Data distribution: PCI 1, Tilt 3

(e) Radio map: PCI 1, Tilt 6 (f) Data distribution: PCI 1, Tilt 6

Fig. 2: Tilt-dependent radio maps and corresponding data distributions
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(a) Relative distance (b) Relative azimuth

Fig. 3: Relative angles on the vertical (left) and horizontal (right) planes between the antenna

pointing direction and the direction towards the test position x

• the relative elevation angle between the down-tilt of the antenna and the vertical direction

from the antenna emitting element to the measurement position, defined as:

δ1(h,x) = 90◦ − (αA + αE(x,xA)) = 90◦ − (h+ αE(x,xA)), (1)

where h is the antenna down-tilt (mechanical plus electrical) and αE is the angle at which

the antenna “sees” the target position depending on the antenna position xA and the target

location x

• the relative azimuth between the horizontal orientation of the antenna and the horizontal

direction to the measurement position defined as:

δ2(x) = βA − βE(x,xA), (2)

where βA denotes the horizontal orientation of the antenna and βE is the horizontal orien-

tation of the target position with respect to the antenna position

Each sample in the training dataset is, therefore, associated with a tuple of values (d, δ1, δ2).

The logarithm transformation is applied to d since the RSRP values are measured in dBm. Finally

the feature vector [d(x), δ1(x, h), δ2(x)]T is obtained and used as input to our models.

A. Deep Transfer Learning

In this section, we describe the proposed transfer learning approach as well as all the op-

timization steps taken to find the best combination of hyperparameters to tune the algorithms.
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The proposed learning approach has been inspired by the fields of computer vision and natural

language processing [21] [22], where deep neural networks constitute the performance benchmark

for classification and prediction tasks. The core idea of our approach is to train a neural network

for the signal strength prediction task in a source domain (reference tilt configuration) and then

“wisely” build a new neural network to obtain fine-grained predictions in the target domain

(target tilt configuration). The reference neural network architectures used in our approach are

FFNs, which are well-known for being powerful nonlinear function approximators [29]. We opt

for FFNs instead of more complex network architectures, such as CNNs or recurrent neural

networkss (RNNs), since the latter usually requires a big amount of data to avoid overfitting,

while FFNs work well also with limited amount of labeled data, which is our case.

We use the mean square error as loss function, which is the common loss used for regression

tasks. By using FFNs as the basic building blocks of our architecture, the flow of information

only travels forward and the layers of the network are fully connected. Formally, FFN learns

a combination of parameters to find the best function approximation. In our case, we aim at

finding a set of parameters θ for the hidden layers and a set of parameters w for the output

layer to estimate ŝ(x) for x ∈ Rp, as shown in Eq. (3):

ŝ(x) = f(x;θ,w) = φ(x,θ)Tw (3)

where φ : Rp → Rq is a nonlinear transformation defining the hidden layers, and parameters

w ∈ Rq map from φ to the desired output.

The proposed learning approach is composed of the following:

• DS: the source domain, it consists of the feature space of the reference tilt configuration

and its marginal probability distribution

• DT : the target domain, it consists of the feature space of the target tilt configuration and

its marginal probability distribution

• MS = f̂S(·): an FFN with n layers approximating the predictive function in the source

domain fS(·)

• MT = f̂T (·): an FFN with m layers approximating the predictive function in the target

domain fT (·)

• {p1, ...,pK}: the best combination of hyperparameters shared by both FFNs associated with
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Number of epochs 500

Batch size 128

Number of inputs 3

Number of layers 4

Hidden units per layer 4, 10, 4, 1

Activation function Sigmoid

Optimizer Adam

Learning rate 0.099

TABLE II: Hyperparameters found by Bayesian optimization

the source and target domains respectively1

The steps of our transfer learning algorithm are defined as follows:

1) We select the source domain DS and we train MS on DS finding the best combination

of hyperparameters {p1, ...,pK} by using Bayesian optimization [30], proved to be an

effective way of finding a suboptimal solution in less time, when compared to random

search [31], for example. The problem of choosing the hyperparameters is modeled as a

sample of a Gaussian process (GP). We start with an initial combination of hyperparameters

and dynamically update the searching space based on the built surrogate probability model

mapping from hyperparameters to the probability of a score on the objective function.

Numerical results show that this process converges in ~50 iterations. Table II shows the

optimized combination of hyperparameters as well as the rest of the architecture selected.

Then MS is trained on DS with the chosen hyperparameters. During this process, the

model is shown to achieve good performance in the source domain. Figure 4 shows the

training and cross validation errors after training for 500 epochs. It can be observed that

the training and cross validation errors decrease dramatically during the first 200 epochs.

After this they keep decreasing steady. We note that both errors are close to each other,

meaning that our model is not overfitting.

2) Once we have obtained MS , we model MT by taking the first i ≤ n layers of MS with the

associated weights and adding new j ≤ m layers that are initialized with random weights.

1For parameter transfer we assume that the models for source and target domains share a combination of hyperparameters.
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Fig. 4: Learning curve on the source domain

The intuition behind this is that the first layers of the network can capture more general

characteristics about the feature space, while the last ones capture more specific behavior.

3) Finally, we train MT on DT using the hyperparameters {p1, ...,pK} mentioned before.

There are two ways of doing this:

a) We freeze the first i layers and retrain only the last j layers of MT on data from

DT . We refer to this approach as DNN.

b) We retrain all the i + j layers, but at a slower learning rate. By doing this the

weights of the first i layers of MT are preserved, since they are already good for

the classification task in DS . After back-propagation, these weights are adjusted to

better fit the classification task in DT . We refer to this approach as P-DNN.

Figure 5 shows a graphical representation of MS and MT , where MT contains the first three

layers of MS and two new layers.

We use the Keras framework [32] on top of TensorFlow [33], due to its flexibility for

implementing this transfer learning approach and performing hyperparameters search. In total,

the training and testing phases of the two models do not last more than two minutes. We use a

laptop with 16GB of RAM memory and 7th generation, Intel Core i7 processor.

B. Baseline Methods

In this section, we describe two baseline methods used to benchmark our work: k-nearest

neighbors (k-NN) and random forest (RF). Based on our previous work [1], these methods
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Fig. 5: Transfer learning model

perform the best.

1) k-Nearest Neighbors with Inverse Distance Weighting: This technique extends the classical

nearest neighbor approaches [34], and predicts the signal at an unknown target location as a

weighted average of the signals at the k closest known locations:

ŝ(x) =
∑

i∈M(x)

ωis(xi). (4)

The set M(x) includes the indexes of the k locations which are geographically closest to the

unknown target location x. Weights ωi are chosen to be inversely proportional to the distance

d(xi,x) and their sum is normalized to one, that is:

ωi =
d(xi,x)−1∑

j∈M(x) d(xj,x)−1
. (5)

2) Random Forest: RF is one of the ensemble methods used for classification and regression

purposes. The algorithm introduced by Ho [35] in 1995, and later extended by Breiman and

Cutler [36], uses the idea of bagging to perform predictions. During the process several trees

are grown independently using different bootstrapped samples of the data and majority voting

or averaging is used for the final prediction. In contrast to traditional trees, the variable used to

perform the split in each node is chosen randomly from a set of predictors [36]. RF is known

to sometimes outperform other machine learning techniques, such as neural networks, due to its

resistance to overfitting [37].
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V. EXPERIMENTS

In this section, we describe the set of experiments carried out. We establish a set of metrics

to measure the performance and the similarity between source and target domains. We compare

the prediction error of our transfer learning method, described in Section IV-A, and the two

baselines methods, described in Section IV-B. We perform these experiments with data coming

from two different sources: (i) real measurements (Section V-A) and (ii) artificially generated

(Section V-B). In both cases we vary the number of instances taken from the target domain. For

the DNN and P-DNN this is the number of samples used to train MT . For the k-NN and RF this

is the number of instances added to the source domain for training. The general objective is to

map the amount of labeled data required from the target domain and corresponding performance,

assessed in terms of mean absolute percentage error (MAPE), which is defined as:

MAPE =
100

k

k−1∑
i=0

∣∣∣∣si − ŝisi

∣∣∣∣ , (6)

where k is the number of target positions in the testing dataset.

In the following sections we will discuss the degree of similarity between different domains

(i.e. datasets). We quantify similarity in terms of Kullback-Leibler (KL) divergence index [38],

which measures the relative entropy of a given probability distribution with respect to another

one. Namely, given two reference datasets, one used for training and one used for testing, we

derive the KL divergence indexes of the probability distributions of the logarithm of the distance

(d), relative angle (δ1) and relative azimuth (δ2) of the two datasets. For example, the symmetric

KL divergence index of the distance probability distributions, in one training and one testing

dataset, is given by:

DKL(d) =
k∑

i=1

P
(tr)
d (i) log

P
(tr)
d (i)

P
(te)
d (i)

+
k∑

i=1

P
(te)
d (i) log

P
(te)
d (i)

P
(tr)
d (i)

, (7)

where P
(tr)
d (i) and P

(te)
d (i) with i = 1 . . . k defining the discrete probability distributions of

the distance in the training and testing dataset, respectively. Similar definitions hold for the KL

divergence indexes related to the relative angle δ1 and relative azimuth δ2. Finally, to give a more

succinct representation of domain similarity, we introduce the domain distance (DD) measure

by summing the three indexes together:

DD = DKL(d) +DKL(δ1) +DKL(δ2). (8)
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Training

2 3 6

Testing 3 0.21 0 2.58

TABLE III: Domain Distance for different training and testing domains

Table III shows the domain similarity for the different combinations of training and testing

domains considered hereafter. Smaller DD values indicate higher domain similarity and vice

versa. For instance, when using data from tilt 2 to predict 3, the domains are more similar than

when using data from tilt 6 to predict 3.

A. Real Measurements

We use a dataset obtained under a given tilt setting (source domain) to predict the perfor-

mance of the same antenna under a different tilt configuration (target domain). This falls into

the category of transductive learning, since the distribution of the data for source and target

domains is different (DS 6= DT ). Figure 6 shows the results in terms of MAPE, obtained by the

different prediction approaches described in Section IV, when considering PCI 1 and different

combinations for the training and testing tilt conditions. Figure 6a refers to the case where the

training set is obtained with an antenna tilt of 2 degrees and the tilt configuration for the test

set is 3 degrees (i.e. we want to predict the radio map at 3 degrees, given the one at 2 degrees).

Figure 6b shows the case where the training set is obtained with an antenna tilt of 6 degrees.

The same 3 degrees tilt configuration is used for testing in both experiments.

From the results in Figure 6, we can make the following observations:

• The prediction error is impacted by the amount of samples taken from the target domain.

In particular, the amount of data taken from the target domain can be decreased by up to

90% with a maximum increase in error rate of 2%. It is worth noting that if no data is

taken from the target domain, the baseline and transfer learning approaches must be used

under the assumptions of traditional machine learning, where source and target domain are

similar. As this is not the case, there is a sharp increase in the error rate of predictions.

This justifies the need to model our problem under the framework of transfer learning in

order to decrease the prediction error.
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(a) Training tilt 2, testing tilt 3 (b) Training tilt 6, testing tilt 3

Fig. 6: MAPE training on real measurements

• Notably, the baseline methods (k-NN and RF) perform similarly to the transfer learning

approaches (DNN and P-DNN) when the source and target domains are similar (DD = 0.21

Table III), and when the amount of samples taken from the testing set is greater than 50%

(300 instances out of 590). Whereas transfer learning approaches have better performance

when the difference among domains increases (DD = 2.58 Table III) and the amount of

points taken from the testing set is smaller than 200. This is because, transfer learning

approaches better capture the physical properties of channel propagation. Thus, being more

robust against the cross-domain missing information.

• When the amount of samples taken from the target domain for training is less than 200,

DNN outperforms P-DNN; meaning that for a smaller amount of points taken from the

target domain retraining the first layers of the network (DNN) is not required. For more

than 200 points retraining the whole network (P-DNN) decreases the error.

Similar results have also been obtained for other PCIs and tilt configurations, but they are not

reported here for the sake of brevity.

In conclusion, when using real measurements the proposed approach shows benefits compared

to the benchmark methods when there is significant difference between source and target domains

and when the available samples of the target domain data are limited. In contrast, considerable

gains are achieved when introducing artificially generated data. This is discussed in the next
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section.

B. Artificial Data

The generation of artificial data, especially for the purpose of data augmentation, has been

shown to be successful in the area of computer vision. By augmenting an existing dataset with

new data that follows the same distribution as the data used for training, overfitting can be

reduced [39]. In our case, we take inspiration from the idea of generating artificial data but

instead of augmenting our dataset, we evaluate the gains of performing transfer learning from a

dataset artificially generated for a given tilt configuration to a dataset of real measurements.

This can be considered as inductive learning, because the antenna profile provided by the

manufacturer (serving as predictive model in source domain fS(·)) is usually different from

the radio propagation model in a particular real environment (the predictive model in target

domain fT (·)). Therefore, the source and target tasks are different (TS 6= TT ).

To generate our artificial dataset, we create a feature vector by generating different sets of

locations at a given tilt configuration. We extract the labels (RSRP values) from the data sheets

provided by the antenna manufacturer. Specifically, we create the feature vector by generating

the artificial points in two different ways: (i) we reuse the same set of locations that we already

have for the different tilt configurations or (ii) we generate a random set of locations no further

than 900m from the reference PCI. After generating our set of locations, for each sample we

calculate distance, relative angle and relative azimuth (Section IV). Finally, we use the data-

sheets provided by the antenna manufacturer to extract the antenna gain on the vertical and

horizontal planes. We apply the path-loss model to generate the final set of labels. Formally, the

process is defined as follows:

1) Given Mh as the set of location indexes where measurements for the considered base

station running configuration h have been taken, we calculate for each location x ∈ Mh

a tuple of values (d, δ1, δ2). Then we create the feature vector [d(x), δ1(x, h), δ2(x)]T as

shown in Section IV.

2) Let η(x) and γ(x) be the horizontal and vertical gain of the antenna in dB respectively,

as taken from the manufacturer antenna sheets. Given the known position x, we formally

define ∆(x) as:
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∆(x) = η(x) + γ(x) (9)

3) Given ∆(x), we use the pathloss model to generate the labels, ŝ(x), by applying the

following:

ŝ(x) = φ0 + φ110 log(d(x))−∆(x), (10)

where φ0 and φ1 are the linear regression coefficients calculated for the reference dataset.

Figure 7 shows the results obtained by the different prediction approaches described in Sec-

tion IV for PCI 1 and different combinations of training and testing tilt settings. All of them use

artificial data as source domain and real measurements as target domain. Specifically, Figures 7a,

7b and 7c refer to the case where the training set is obtained with an antenna tilt of 2, 3 and

6 degrees, respectively, and the tilt configuration for the test set is 3 degrees. Figure 7d refers

to the case where the training set is obtained with an antenna tilt of 3 degrees and the same tilt

configuration of 3 degrees is used for testing, but the set of locations is randomly generated.

From the results shown in Figure 7, we can make the following observations:

• As in the case of real measurements, the prediction error is impacted by the amount of

samples taken from the target domain. However, in case of artificially generated data, there

is no cost for the operator. Therefore, there is no limit on the amount of data that can be

used for training, especially when the set of locations can be randomly generated.

• Transfer learning outperforms the baselines methods significantly when artificial data is

used as source domain. It is worth noting that the only difference with the experiments

carried out in Section (V-A) is a change on the conditional probability distribution in the

source domain (signal strength values generated artificially). Therefore, transfer learning is

better than the baselines methods at capturing the domain difference between the conditional

probability distributions in source and target domains.

• When using artificial data as source domain, retraining the network from the first layer

(P-DNN) leads to better performance than just retraining the last layers of the network

(DNN).

• Using artificial data from the same tilt achieves better performance than using artificial data

from different tilt configurations as source domain.
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(a) Training on tilt 2, testing tilt 3 (b) Training tilt 3, testing tilt 3

(c) Training on tilt 6, testing tilt 3 (d) Training on random path tilt 3, testing tilt 3

Fig. 7: MAPE training on artificially generated data

(a) Training on tilt 2, testing tilt 3 (b) Training tilt 6, testing tilt 3

Fig. 8: MAPE Comparisons between training on real and artificial generated data
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To conclude, in Figure 8 we show the best approaches for both artificial data and real

measurements to perform radio map prediction. Namely, we consider the prediction of tilt 3

when using tilt 2 and 6 as source domains, for our two different data sources. From Figure 8

we can draw the following conclusions:

• In general, transfer learning using artificial data as the source domain can be used to perform

the predictions, since the error rate never exceeds 2%.

• By using transfer learning with artificial data and retraining the network from the first layer

(P-DNN artificial data) we can achieve better performance than by using real measurements

and not retraining the first layers of the network (DNN real data). This holds when the

amount of points taken from the target domain is more than 200. An intuition behind this

is that when the dataset is rich enough, the model seems to more easily learn patterns from

artificial data than from real measurements. Since real measurements (in our case the signal

strength) are affected by noise, errors, obstacles in the terrain, etc.

• Conversely, if the amount of points taken from the target domain for training is less than

200, using real measurements and training just the last layers of the network (DNN real

data) leads to better performance than using artificial data and retraining the whole network

(P-DNN artificial data).

VI. CONCLUSIONS

In this paper, we addressed the problem of predicting the signal strength in the down-link of a

real LTE network, where the antennas can be tuned to operate with different antenna tilt config-

urations. Different approaches were considered as candidates for predicting the signal strength.

All of them were based on refined features related to propagation and antenna configuration. As

opposed to other works in the field of radio map inference, we studied the quality of prediction of

the aforementioned approaches when the datasets used for training and testing are related, but not

sampled from the same distribution. We observed that the performance of the predictive models

is dependent on the amount of data taken from the testing domain for training. Furthermore,

the proposed transfer learning algorithms, based on both feature transfer and parameter transfer

methods, are shown to be stable, which means that they are not affected by the domain similarity

between source and target domains. Therefore, the learned models can be stored and reused to

carry out the predictions for different tilt configurations of the same antenna with larger domain
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difference. To reduce the amount of labeled data required from the target domain, we used a

dataset of artificially generated measurements. We discussed the suitability of using artificially

generated data against real measurements to perform the predictions and we showed that by using

transfer learning and artificially generated data the prediction performance decreases at most by

2%, while dramatically reducing the required amount of labeled data. Finally, we provided an

analytic method to generate the artificial dataset at zero cost for the operator. Future work will

expand on new ways of generating artificial data by using unsupervised learning.
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Abstract

Multi-connectivity is emerging as promising solution to provide reliable communications and seam-

less connectivity at the millimeter-wave frequency range. Due to the obstacles that cause frequent

interruptions at such high frequency range, connectivity to multiple cells can drastically increase the

network performance in terms of throughput and reliability by coordination among the network elements.

In this paper, we propose an algorithm for the link scheduling optimization that maximizes the network

throughput for multi-connectivity in millimeter-wave cellular networks. The considered approach exploits

a centralized architecture, fast link switching, proactive context preparation and data forwarding between

millimeter-wave access points and the users. The proposed algorithm is able to numerically approach

the global optimum and to quantify the potential gain of multi-connectivity in millimeter-wave cellular

networks.

I. INTRODUCTION

The fifth generation (5G) of mobile communications is characterized by ambitious require-

ments to be fulfilled in terms of broadband access, connection density and data rate, e.g., 50

Mbps everywhere and an amount of connections in the order of thousands per km2 as reported

in [1]. Millimeter wave (mm-wave) communications technology is one of the promising solutions

to tackle these challenges. Mm-wave increases the available spectrum resources by exploiting
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under-utilized frequency bands between 30 to 300 GHz. On the other hand, communication

in these frequency bands is subject to more challenging propagation conditions than the lower

frequency bands, especially in terms of free space path loss and penetration loss. This latter

may lead to frequent transmission interruptions when there is no line-of-sight (LOS). Multi-

connectivity (MC) represents a possible solution to minimize the number of communication

interruptions, by allowing the users (UEs) to establish and maintain connections with multiple

cells/access points at the same time.

The benefits of having multiple links available for a single UE in a mm-wave wireless network

are discussed in several works, e.g., [2] and [3]. These show how the MC can improve the mm-

wave performance in terms of denial of service, outage and drop session probabilities when

multiple mm-wave access points (mmAPs) can simultaneously transmit to the UE. The work

in [4] proposes several potential centralized architectures for MC in mm-wave communications.

In particular, these are based on a common framework for mm-wave access supported by low

band frequencies. The authors in [4] qualitatively analyze the different architectural approaches in

terms of required messages and overhead. Moreover, in [5], the authors propose a new alignment

procedure, which can represent a bottleneck in a mm-wave MC scenario. The proposed method

can reduce the duration of this phase when the UEs sustain connections with multiple mmAPs.

The vast majority of the works dealing with MC assume a centralized architecture with accurate

synchronization between the network elements, which is also a fundamental requirement for

the coordinated multipoint (CoMP) joint transmission method. In particular, the work in [6]

proposes a centralized radio-over-fiber architecture for CoMP in mm-wave small cell networks.

The analysis and the experimental results show increased performance in reception quality and

probability of LOS.

In this work, we consider a two-layer outdoor cellular network consisting of 5G low band base

stations (5G-LBs) and mmAPs connected to a network controller (NC). Moreover, by exploiting

the synchronization between the mmAPs, we assume that a UE can establish and maintain

multiple connections and possibly receive data from several mmAPs at the same time, similar

to a CoMP joint transmission approach.

A. Contributions

In a multi-connectivity scenario, one of the most relevant aspects is the link scheduling

problem. In this work, we propose a novel link scheduling approach for network throughput
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maximization, and quantify the potential gain of MC and CoMP for mm-wave cellular networks.

We formulate the optimal link scheduling problem as a binary integer program (BIP) and then,

we propose an algorithm for solving the problem, which is able to numerically approach the

global optimum. We exploit a fast link switching mechanism based on the assumption that each

link can be in one of four different states. These states determine the time needed to the link to

establish a connection and start the transmission.

Finally, by using predicted information about the channel quality over a certain time window,

the NC optimizes the link scheduling and prepares in advance the UEs and the mmAPs for

the communication. We evaluate the performance of the proposed scheduling algorithm with

simulations, and we show the advantages with respect to the single connectivity (SC) approach in

terms of throughput and number of interruptions. The rest of the paper is organized as follows: in

Section II we describe the system model and the assumptions. In Section III and in Section IV we

formulate the optimization problem and we present the solution algorithm for the MC approach.

Finally, Section V illustrates the results and performance comparison and Section VI concludes

the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

As in [4], we consider an MC approach for which each UE is associated to a 5G-LB and

possibly to several mmAPs, where, the control and the data planes are split and using the 5G-LB

and the mmAPs, respectively. The two layers are connected to an NC in a centralized architecture

that enables fast link switching, mmAPs data buffer synchronization, data forwarding, and

possibly joint transmissions. In this latter case, several mm-wave connections transmit to the

UE the same data, combined then at the receiver [6].

Furthermore, we assume that the mmAPs are perfectly synchronized both in frequency and

time and the signals arrive to the UE in-phase. The beamforming gain of downlink transmissions

at the receiver depends on how the UE and the mmAPs perform beam alignment. For this

purpose, both the mmAP and the UE have several sub-arrays and radio frequency (RF) chains

such that each of them can perform the beam alignment with a mmAP, independently. Moreover,

we consider that the beams are narrow enough so that the interference becomes negligible, as

shown in [7], and we assume that the signal is completely blocked in NLOS conditions and the

resulting link throughput is zero.
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We assume that the NC has the perfect knowledge of the channel quality condition for each

UE over a certain upcoming time window in term of both LOS/NLOS states and achievable

throughput. In a real scenario these information can obtained by applying several channel quality

estimation and prediction techniques. Since, in this work, we are mainly interested to show the

potential gain of MC, we do not consider a specific prediction technique, but the NC exploits

this information and proactive link preparation, for optimizing link scheduling.

A. Fast Link Switching

As mentioned above, we consider a fast link switching mechanism, based on [4], which exploits

different link states. In particular, each link state defines which operations the mmAP, the UE

and NC are performing, i.e., UE context transferring, data buffer exchanging and transmission.

In this work, we use the term UE context, for both 5G-LB and mmAPs, to refer to the block

of information required to maintain the UE connection, as defined in [8]. The UE context is

established with a 5G-LB or mmAPs at the first access of a UE as well as when the handover

procedure is completed. Hereafter, the following link states are introduced: active (A), hot stand-

by (H), cold stand-by (C), and inactive (I).

• The link is in A when the mmAP is transmitting data, received by the NC, to the UE.

• A link is in H when the UE, the mmAP and the NC have completed the UE context

preparation. The mmAP is receiving UE data from the NC, but it is not transmitting them,

since the beam alignment is not yet performed.

• A link is in C when the mmAP is not receiving data from the NC. The mmAP is performing

only the operations needed to obtain the UE context information and the buffering data,

which are not received yet.

• A link is in I if it is in none of the above states.

The mmAP consumes power, backhaul capacity, and radio resources (time-frequency slots) in

both A and H states. The purpose of introducing four different states is to define the transition

of a link from I to A. Namely, each link in I should go through C and H before becoming A.

By allowing a link to be prepared in advance, we can reduce the time needed to activate the link

when a communication interruption occurs. The transition between H and A can occur only in

LOS (since it requires pilot transmission [9]), while, the transition from C to H can be performed

in NLOS since the control messages between the NC and UE are transmitted by the 5G-LB. We
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refer to the amount of time needed to transit between states as transition time, which depends

on the performed operations.

In summary, given the assumptions and the architecture described above, we aim to solve the

optimal link scheduling problem in an MC mm-wave cellular network such that, given a certain

time window for which the channel quality is known, the network throughput is maximized.

The link scheduling problem is subject to the constraints on the transition time between the

different link states and the mmAP total power budget. In the following sections, we formulate

the optimization problem and present a solution algorithm.

III. MULTI-CONNECTIVITY PROBLEM FORMULATION

In this section, we formulate the optimization problem introduced in Section II-A. Namely,

given a set of mmAPs M, a set of UEs U , and a set of time slots K, with cardinalities M ,

U and K respectively, the NC decides, for each time slot, which state to assign to each link

in order to maximize the network throughput (i.e., the sum of all the UEs’ throughput). The

relation between the UE’s throughput and the corresponding active links is non-linear. To deal

with non-linearity, we first introduce the concept of configuration, which can be then used to

formulate the optimization problem as a linear BIP. A configuration refers to a subset of links

whose elements are active and in LOS. Since the channel condition may change over time, for

slot k we define the set of all the possible configurations Sk and denote its cardinality by Sk.

Each configuration s ∈ Sk defines the achieved network throughput.

Now, given the sets of configurations Sk, the task of the NC is to choose one among the given

configurations (at each time slot) in order to maximize the network throughput. As mentioned

above, we assume that at each time slot and for each mmAP-UE pair, the NC knows the link

status, i.e., whether or not it is in LOS. Therefore, we define the binary parameter lijk, which

is equal to 1 if link ij between mmAP i and UE j is in LOS in time slot k and 0 otherwise.

Moreover, since a link can be in several states, as described in Section II-A, we define the

mutually exclusive binary variables yijka , yijkh , and yijkc . They represent the state of link ij in

time slot k, and they are equal to 1 when the link states are A, H and C, respectively. When the

variables associated to a link in a time slot are all equal to zero, the link is inactive.

Furthermore, we define the variable zsk, with s ∈ Sk and k ∈ K, which is set to 1 if

configuration s is used in time slot k and 0 otherwise. Since each configuration defines a subset

of active links, we introduce the parameter αijsk, which is equal to 1 if link ij is active in
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configuration s of time slot k. The throughput provided by a configuration s to UE j in time

slot k is given by parameter rjsk. This value is known to the NC, because the throughput is

fully determined in each configuration. Now, we can formulate the problem as follows:

P1 : max
yijka ,yijkh ,yijkc ,zsk

K∑
k=1

Sk∑
s=1

U∑
j=1

rjskzsk (1a)

s.t.
U∑
j=1

(Pay
ijk
a + Phy

ijk
h ) ≤ Ptot ∀i ∈M, k ∈ K (1b)

yijka + yijkh + yijkc ≤ 1 ∀i ∈M, j ∈ U , k ∈ K (1c)

Sk∑
s=1

zsk ≤ 1 ∀k ∈ K (1d)

yijka =

Sk∑
s=1

αijskzsk ∀i ∈M, j ∈ U , k ∈ K (1e)

lijnyijnh + yijk−1
a ≥ yijka (1f)

∀i ∈M, j ∈ U , k ∈ K, n ∈ {k − tha, . . . , k − 1}

yijnc + yijk−1
h + yijk−1

a ≥ yijkh (1g)

∀i ∈M, j ∈ U , k ∈ K, n ∈ {k − tch, . . . , k − 1}

yijka , yijkh , yijkc , zsk ∈ {0, 1} (1h)

∀i ∈M, j ∈ U , k ∈ K, s ∈ Sk.

The objective function, given by (1a), represents the sum of all the UEs’ throughput associated

to the selected configurations. The UE’s throughput is computed by the well-known Shannon’s

formula for the AWGN channel capacity. According to the assumptions in Section II, the

throughput provided by the s-th configuration at the k-th time slot to the j-th UE can be computed

as in [6] :

rjsk = B log2(1 +
M∑
i=1

U∑
j=1

αijskSNRijk), (2)

where, SNRijk is the signal-to-noise ratio for the link between the i-th mmAP and the j-th

UE at the k-th time slot and B denotes the system bandwidth. Constraints (1b) limit the total

transmit power per mmAP to be less than or equal to the power budget, where Pa and Ph are

parameters that represent the power consumed by a mmAP when a link is A or H, respectively.

Inequalities (1c) impose each link to be in maximum one state. Constraints (1d) force the selection
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of at most one configuration per time slot, for which the corresponding active links are set by

equalities (1e).

Constraints (1f) and (1g) take into account the transition times from state H to A and from C

to H, respectively. In particular, link ij can be active in time slot k if either it is A in time slot

(k-1) or it is H for the previous tha time slots consecutively. This comes from the alignment

phase, in which the mmAP and the UE need to be in LOS. Similarly, a link can be in the state

H if either it is in the state A or H in time slot (k-1) or it has been in the state C for tch time

slots.

The optimization problem P1 is not convex since it is a BIP. Moreover, the cardinality of Sk,

that is at most 2MU , grows exponentially with the number of UEs and mmAPs. However, most

of the configurations are not relevant for constructing the optimal solution. Therefore, we follow

an approach similar to the one considered in [10] that is presented in the next section.

IV. MULTI-CONNECTIVITY OPTIMIZATION ALGORITHM

In this section, we present an algorithm to solve the problem P1 formulated in Section III

and deal with the exponential growth of configurations. The algorithm is based on a column

generation approach. Specifically, we consider the continuous relaxation of P1, which is a linear

program, and decompose it into a master problem (P2) and a pricing problem (P3). For sake of

space we do not explicitly show the formulation of P2, but it can be expressed as P1, with the

differences that (a) the constraint (1h) is replaced with 0 ≤ yijka , yijkh , yijkc , zsk ≤ 1 (continuos

relaxation) and (b) we consider only a subset of configurations S̆k. By solving P3, we generate

new configurations and associated network throughput that progressively improve the solution

of P2.

More precisely, the configurations represent columns in P2 and adding a new configuration is

equivalent to adding a new column. We generate a new subset of configurations per each time slot

k since the channel conditions, hence the network throughput associated with a configuration,

may change over the time slots. The solution of P2 is used by the pricing problem to determine

whether a new configuration can improve network throughput or not. The resulting algorithm is

depicted in Algorithm 1 and described in details in Section IV-B.
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Fig. 1: Possible scenario for the local enumeration. In this case only mmAPs 1, 2 and 3 are considered for UE 1

since mmAP 4 is in NLOS and mmAP 5 is outside the range R, thus, only mmAPs 1, 2, and 3 are included in the

set Q1k. Therefore, we have that E1 = 23, and the possible combinations are represented by the following sets:

V11k = {}, V12k = {1}, V13k = {2}, . . . , V18k = {1, 2, 3}.

A. Pricing Problem

In this section, we define the pricing problem for the column (i.e., configuration) generation.

Before proceeding with the formulation, we introduce the concept of local enumeration as in [10].

This is needed in order to decrease the complexity of the pricing problem, since for each UE

there are 2M possible configurations of active links, and considering all of them is not scalable.

The local enumeration concept is based on the idea that, in each time slot, typically the number

of mmAPs, that significantly contribute to the UE’s throughput, is small with respect to M . Thus,

we define the set Qjk, which contains all the mmAPs that are in LOS and at a maximum distance

R with respect to UE j in time slot k. Then, we consider all the possible combinations of the

active mmAPs included in the set Qjk, whose number is Ej . Each combination is represented by

a set Vjek, which contains the active links for UE j in time slot k for combination e ∈ [1 . . . Ej].

Each set Vjek determines a UE’s throughput rjek. Fig. 1 shows an example of local enumeration

for UE 1 with some possible combinations of active links.

Now, in order to formulate the pricing problem, we introduce the binary variables αij and vje.

The former is set to 1 if the link between the mmAP i and the UE j is A, and zero otherwise,

and it is then used to set the corresponding parameter αijsk of the master problem (for the

considered time slot k and generated configuration s). The latter variable, vje determines which

set Vjek is selected among the Ej scenarios for the active links of UE j. Thus, we can formulate
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the pricing problem for time slot k as follows:

P3 : max
αij ,vje

U∑
j=1

rj −
M∑
i=1

U∑
j=1

λijαij (3a)

s.t.
U∑
j=1

Paα
ij ≤ Ptot ∀i ∈M (3b)

Ej∑
e=1

vje = 1 ∀j ∈ U (3c)

∑
e:h∈Vje

vje ≤ αhj ∀j ∈ U , h ∈ Qj (3d)

rj =

Ej∑
e=1

vjerje ∀j ∈ U . (3e)

αij, vje ∈ {0, 1} ∀i ∈M, j ∈ U , e ∈ [1 . . . Ej]. (3f)

Expression (3a) represents the objective function, where λij are the dual variables associated

with constraints (1e) of P2. The dual variables πij , associated with constraints (1d) of P2, are

not explicitly written out, because they are additive constants in the objective function.

Constraints (3b) are related to the total transmit power budget for the mmAPs that is considered

also here in order to generate only configurations that are feasible for P2. Equalities (3c) impose

that only one combinations of active links is selected per time slot and per UE. The constraints

(3d) identify which links must be active according to the selected combinations and state

the consistency between the v-variables and α-variables. The equalities (3e) define the UEs’

throughput rj associated with the selected combinations.

B. Algorithm

Finally, the optimal scheduling algorithm is presented in Algorithm 1. At each iteration,

Algorithm 1 solves the problem P2 and obtains the dual variables λij and πij , whose values are

used to compose the objective function of the pricing problem (3a). Thus, for each time slot, we

solve the problem P3 and include the resulting configuration and associated UEs’ throughput to

the master problem if the reduced cost is positive. The algorithm concludes when none of the

remaining configurations, not included in the subsets S̆k, has positive reduced cost. In this case

we solve the binary integer version of P2.
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Algorithm 1
1: Construct P2 with a subset of configurations S̆k

2: repeat

3: for k ∈ K do

4: for s ∈ Sk\S̆k do

5: Solve P2

6: if maxs∈Sk\S̆k

∑U
j=1 r

jsk −
∑M

i=1

∑U
j=1 λ

ijskαijsk − πij > 0 then

7: Add the corresponding configuration to S̆k

8: end if

9: end for

10: end for

11: until maxk∈K maxs∈Sk\S̆k

∑U
j=1 r

jsk −
∑M

i=1

∑U
j=1 λ

ijskαijsk ≤ 0

12: Solve the binary integer version of P2

mmAP1 A A A A A A A C C C C

mmAP2 I I I I C C H A A A A

mmAP1 AS AS AS AS AS AS AS I I I I

mmAP2 I I I I I I I HS HS HS AS

LOS
LOS NLOS

Multi-connectivity

Channel Condition

Single-connectivity

t

mmAP1 mmAP2 mmAP1 mmAP2

mmAP2
mmAP1

NLOS

Fig. 2: This figure shows the difference between the link switching of the MC and SC. In the figure, ts is equal

to the sum of tha and tch, which in turn are set to 1 and 2 time slots, respectively. For the SC case we define the

states AS and HS, which correspond to a link that is active or performing the handover, respectively.

V. PERFORMANCE EVALUATION

In this section, we compare the maximum network throughput achieved by Algorithm 1 (“MC

+ CoMP”) and the solution of the SC approach. For sake of space we do not present the

formulation of this latter, which can be written as a linear BIP. More precisely, in the SC case,

a UE can be connected only with one mmAP per time slot, which means that the UE can

either receive data from or performing the handover with a mmAP. The handover duration is

represented by the parameter ts. In order to make a fair comparison between the MC and the

SC cases, also for this latter we assume perfect channel quality prediction. In summary, for the

SC case we have that (a) link switching can only start in LOS (there is no support of 5G-LBs)

and (b) the UE cannot be connected to the previous mmAP while it is switching to a new one,

as shown in Fig. 2.
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TABLE I: Simulation parameters.

Ptot 30 dBm Pa 24 dBm Ph 24 dBm

Ga 15 dBi Gu 10 dBi hBS 10 m

hut 1.5 m fc 30 GHz PN -85 dBm

B 1 GHz K 20 tha 1

tch 2 ts 3 R 360 m

Moreover, we compare these solutions with the network throughput reached by the MC case

without CoMP (“MC no CoMP”), in which, differently from the SC case, the UEs can keep the

connections with both the 5G-LB and possibly multiple mmAPs. However, for the MC without

CoMP case, each UE can have at maximum one active link per time slot. In addition, we report

the solution of the master problem P2, once the column generations is ended (“MC + CoMP

Bound”), which represents an upper bound of the global optimum of P1.

A. Simulation Setup

We consider an area of 250×250 m2, where the mmAPs and the UEs are randomly distributed

following a uniform distribution. The UEs move following a uniform rectilinear motion with a

speed of 3 km/h and a constant direction randomly chosen. Similar to [11], we model the

interruption inter-arrivals as independent exponential random variables with parameter λ, while

the duration of an interruption is characterized by a uniform distribution between [400, 1000]

milliseconds (ms).

In order to compute the throughput associated to a link, we express the SNR in decibel (dB) as

follows: SNR = Pa+Ga+Gu−PLUMi−LOS−PN , where Ga and Gu are the beamforming gains

of the mmAP and the UE respectively. The term PLUMi−LOS is the path loss, which follows the

model for urban micro cells (UMi) in LOS outdoor street canyon environment described in [12].

This depends on the height of the mmAP hBS , the height of the UE hut, the carrier frequency

fc and the distance between the transmitter and the receiver. PN represents the noise power.

In order to obtain a comprehensive performance evaluation, hereafter, we vary several param-

eters, such as M , Ptot, and λ. Unless specified otherwise, other parameters are fixed and shown

in Table I, where K, tha, tch, and ts are expressed in the number of time slots. More precisely,

for tha, we refer to the values described in [5] for digital beamforming at the mmAPs and analog
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Fig. 3: Network throughput when varying the number of mmAPs M , for U = 20, λ−1 = 250 ms.

beamforming at the UEs, with 32 beams at the mmAP and 8 at the UE. Since tha is the smallest

time unit in scheduling, we set the duration of a single time slot equal to tha and we assume

that the channel condition does not change in a time slot. Furthermore, we assume R to be large

enough for the considered area, so that all mmAPs can potentially transmit to all UEs.

B. Results

In Figs. 3-5, we compare the network throughput resulting from the MC with and without

CoMP, and the SC cases, when varying M , λ and Ptot. Note that, given the assumption Pa = Ph,

the power budget, Ptot, can be expressed in terms of maximum number of simultaneous A and H

links per mmAP (4 for Ptot = 30 dBm). We can observe that Algorithm 1 almost overlaps with

the upper bound, which means that, at least for the analyzed cases, the solution of Algorithm 1

is able to numerically approach the global optimum.

Specifically, Fig. 3 shows the network throughput when varying the number of mmAPs M .

The number of UEs is U = 20 and λ−1 = 250 ms. We can observe that for both the MC and SC

approaches the network throughput increases as the number of mmAPs grows. The MC cases

(with and without CoMP) provide always a higher network throughput with respect to the SC
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approach, which is reflected also in the average number of interruptions per UE. Indeed, for

M = 5 and U = 20 the number of time slots without any active links per UE is equal to 6 and

9 for the MC and SC cases, respectively. The gap between these latter at M = 1 is due to the

fact that even with only one mmAP, MC can rely on the support of the 5G-LB, which allows

the links to be prepared in advance, even in NLOS.

In Fig. 3, the difference between the solution of Algorithm 1 and MC without CoMP is very

small. For this reason, we can conclude that most of the gain of Algorithm 1 with respect to

the SC approach is given by the multiple connections, the fast link switching and the 5G-LB

support. In this case, the improvement in terms of network throughput given by using CoMP

transmissions is relatively small, which means that it is more efficient to serve more UEs with

different links than to serve a lower amount of UEs by providing them multiple transmitting

links. This is due to the relation between the active links and the UE’s rate in the CoMP case,

which is given by (2). Moreover, given Ptot, Pa, and Ph, the maximum number of A and H

links per time slot per mmAP is 4 and the number of UEs is U = 20. Therefore, for most of

the cases in Fig. 3, the number of LOS links is lower than the number of UEs and the NC does

not take advantages from CoMP.

Indeed, when we increase the maximum number of transmitting links per mmAP per time

slot, i.e. Ptot, the difference between the MC without and with CoMP transmissions increases

in favor of the latter. This is shown in Fig. 4. Moreover, we can observe that, when the number

of available links goes above a certain threshold, the slope of the curves decreases and, for any

of the considered schemes, increasing Ptot becomes less beneficial. This phenomenon (though

less evident) appears also in Fig. 3, where the number of available links indirectly increases

by increasing the number of mmAPs. Finally, Fig. 5 shows the comparison among the different

approaches when varying the inter-arrival link interruptions rate λ with a fixed number of UEs

U = 20 and mmAPs M = 5. We observe that the gap between SC and MC cases decreases with

λ (i.e. when λ−1 increases). As a matter of fact, when the interruptions become less frequent,

the links are more stable and, therefore, the advantages of fast link switching are less evident.

VI. CONCLUSION

We have considered optimal link scheduling in an multi-connectivity mm-wave cellular net-

work with the objective of maximizing the network throughput over a certain time window

with constrained total power budget per mmAP. The proposed column generation approach in
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Fig. 4: Network throughput when varying the total power budget expressed in terms of maximum number of

simultaneous A and H links, for M = 5 and U = 30 and λ−1 = 250 ms.

Algorithm 1 leads to a solution that is very close or even equal to the global optimum. Numerical

results show the potential gain of multi-connectivity in millimeter-wave cellular networks. The

proposed solution results in significant improvement of the network throughput with respect to

the SC case. The improvement is more profound when the number of mmAPs increases or the

link interruptions are more frequent.

Extensions of this work include investigating the benefits of multi-connectivity when mini-

mizing the number of interruptions and considering error-prone prediction of the channel quality

information exploited by the network controller.
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Abstract

In this work, we analyze the throughput of random access multi-user relay-assisted millimeter-wave

wireless networks, in which both the destination and the relay have multi-packet reception capability.

We consider a full-duplex network cooperative relay that stores the successfully received packets in a

queue, for which we analyze the performance. Moreover, we study the effects on the network throughput

of two different schemes, by which the source nodes transmit either a packet to both the destination and

the relay in the same timeslot by using wider beams (broadcast scheme) or to only one of these two by

using narrower beams (fully directional scheme). Numerical results show how the network throughput

varies according to specific system parameters, such as positions and number of nodes. The analysis

allows us also to understand the optimal transmission scheme for different network scenarios and shows

that the choice to use transmissions with narrow beams does not always represent the best strategy, as

wider beams provide a lower beamforming gain, but they allow to transmit simultaneously both at the

relay and the destination.

I. INTRODUCTION

Given the exponential growth of data rate and connections for the fifth generation (5G) of

wireless networks, millimeter-wave (mm-wave) communications technology has attracted the

interest of many researchers in the past few years. The abundance of spectrum resource in the

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreement No. 643002.
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mm-wave frequency range (30-300 GHz) could help to deal with the longstanding problem of

spectrum scarcity. However, the signal propagation in the mm-wave frequency range is subject

to more challenging conditions in comparison to lower frequency communications, especially in

terms of path loss and penetration loss, which causes frequent communication interruptions.

Several solutions have been proposed in order to overcome the blockage issue, e.g., cell

densification, multi-connectivity and relaying techniques. Although relay has been extensively

investigated for microwave frequencies [1]–[5], mm-wave communications present peculiarities

that make further analysis necessary. As an example, in contrast to broadcast transmissions

(mainly used for lower frequency bands), mm-waves use narrow beams with higher beamforming

gain to overcome the path loss issue. By using these transmissions (fully directional scheme,

FD), a source node (user equipment, UE) sends a packet either to the relay or to the destination

(mm-wave access point, mmAP). On the other hand, in the broadcast communication case (BR),

a packet that is sent by a UE can be received by both the relay and the mmAP in the same

timeslot.

In this work, we analyze the throughput of network cooperative communications in a multi-

user mm-wave wireless network. We evaluate two types of transmissions, i.e., FD and BR.

When the UEs use a BR scheme and the transmission to the destination fails, the relay stores

the packets (that are correctly decoded) in its queue and is responsible to transmit it to the

destination. This technique is also known as network level cooperation relaying [2]–[5].

A. Related Work

The benefits of relaying techniques for mm-wave wireless networks have been discussed

in several works, e.g, [6]–[12]. In [6] and [7], stochastic geometry is used to analyze the

system performance for a relay-assisted mm-wave cellular network. Authors analyze several relay

selection techniques and they show a significant improvement in terms of signal-to-interference-

plus-noise ratio (SINR) distribution and coverage probability. In [8], authors propose a two-

hop relay selection algorithm for mm-wave communications that takes into account the depen-

dency between the source-destination and relay-destination paths in terms of line-of-sight (LOS)

probability. In [9], a joint relay selection and mmAP association problem is considered. In

particular, the authors propose a distributed solution that takes into account the load balancing

and fairness aspects among multiple mmAPs. Other works, [10] and [11], focus on relaying
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techniques for device-to-device (D2D) scenarios and analyze, by using stochastic geometry, the

coverage probability and the relay selection problem, respectively.

The authors of [12] analyze the tradeoff between mm-wave relay and microwave frequency

transmissions for a two-hop half-duplex relay scenario. They study the throughput and delay for

a single source-destination pair and a single relay, which can transmit on mm-wave frequencies

or by using microwave frequencies when the direct path is blocked. To the best of our knowledge,

the setup considered in this paper has been investigated only for microwave frequencies [4],

without taking into account different transmission strategies.

B. Contributions

In this work, we provide an analysis of the throughput for random access multi-user cooperative

relaying mm-wave wireless networks. We consider two different transmission schemes, i.e.,

FD and BR that may provide different beamforming gains and cause different interference

levels. Indeed, BR transmissions may provide a lower beamforming gain with respect to the

FD scheme, but they allow to transmit simultaneously both at the relay and the mmAP. The

UEs, independently, choose to transmit by following one of the schemes and we identify the

optimal strategy with respect to system parameters; namely, we show under which conditions

BR transmissions should be preferred to a FD scheme and vice-versa. Furthermore, by using

queueing theory, we study the performance characteristic of the queue at the relay, for which

we derive the stability condition, as well as the service and the arrival rate.

The rest of the paper is organized as follows: in Section II, we describe the system model

and the assumptions. In Section III, we present the queue analysis at the relay with two UEs

and in Section IV, we generalize these results and evaluate the aggregate network throughput

for N UEs. In Section V, we illustrate the results and performance evaluation and Section VI

concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Network Model

We consider a set of symmetric1 UEs N , with cardinality N . We consider one mmAP

(destination) and one full-duplex relay (R) that operates in a decode-forward manner. We assume

1Symmetric UEs have the same mm-wave networking characteristics, e.g., propagation conditions. Our study can be generalized

to the asymmetric case; however, the analysis will be dramatically involved without providing any additional meaningful insights.
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multiple packet reception capability both at the mmAP and the R which are equipped with hybrid

beamformers and they can form multiple beams at the same time [13]. The UEs are equipped

with analog beamformers, which can form one beam at a time. We assume slotted time and

each packet transmission takes one timeslot. The relay has no packets of its own, but it stores

the successfully received packets from the UEs in a queue, which has infinite size2 and bursty

arriving traffic. The UEs have saturated queues, i.e, they are never empty. We assume that

acknowledgments (ACKs) are instantaneous and error free and packets received successfully are

deleted from the queues of the transmitting nodes, i.e., UEs and R.

UEs and R transmit a packet with probabilities qu and qr, respectively. As mentioned previ-

ously, a UE can transmit by using either the FD or the BR scheme with probabilities quf and

qub (quf = 1 − qub), which are conditioned to the event that a packet is transmitted. In turn,

when a UE uses the FD transmission, it transmits either to the mmAP or to R with probabilities

qud and qur (qud = 1 − qur), respectively, which are conditioned probabilities to the event that

a packet is transmitted by using the FD scheme. In the BR case, R stores the successfully

received packets only when these are not received by the mmAP and the relay always uses

directional communications to forward them to the mmAP. In Fig. 1, we illustrate an example

of the FD and BR transmissions, where dur and dud represent the distances between the UE

and R and between the UE and the mmAP, respectively. The parameter θrd is the angle formed

by R and the mmAP with a UE as vertex and θBW is the beamwidth. Hereafter, we indicate the

probability of the complementary event by a bar over the term (e.g., qu = 1 − qu). Moreover,

we use superscripts f and b to indicate the FD and BR transmissions, respectively.

B. SINR Expression and Success Probability

A packet is successfully received if the SINR is above a certain threshold γ. Ideally, multiple

transmissions at the receiver side of a node do not interfere when they are received on different

beams. However, in real scenarios, interference cancellation techniques are not perfect; thus, we

introduce a coefficient 0 ≤ α ≤ 1 that models the interference between received beams. The cases

α = 0 and α = 1 represent perfect interference cancellation and no interference cancellation,

respectively. In order to keep the clarity of the presentation we consider α constant. Moreover,

we assume that an FD transmission to the mmAP does not interfere with the packet transmitted

2A similar analysis can be derived for the case of finite queue size, which will be treated in an extension of this work.
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Fig. 1: FD (UE1) and BR (UE2) transmissions in a scenario with two UEs, one relay and one mmAP. In this

example, UE1 is transmitting to the mmAP.

to R and vice-versa. On the other hand, when a UE uses a BR scheme, its transmission interferes

with the transmissions of the other UEs for both the mmAP and R.

SINRf
ij/Ifl,Ifn,Ibl,Ibn|LOSij

=
ptg

f
i g

f
j hl(i, j)

pN + α
(∑
k∈Ifl

pfr/l(k, j) +
∑
m∈Ibl

pbr/l(m, j) +
∑
u∈Ifn

pfr/n(u, j) +
∑
v∈Ibn

pbr/n(v, j)
) . (1)

We assume that the links between all pairs of nodes are independent and can be in two

different states, LOS and non-line-of-sight (NLOS). Specifically, LOSij and NLOSij are the

events that node i is in LOS and NLOS with node j, with associated probabilities P (LOSij) and

P (NLOSij), respectively. Furthermore, we assume that R is placed in a position that guarantees

the LOS with the mmAP, namely, P (LOSrd) = 1. In order to compute the SINR for link ij,

we first identify the sets of interferers that use FD and BR transmissions, which are If and Ib,

respectively. Then, we partition each of them into the sets of nodes that are in LOS and NLOS

with node j. These sets are Ifl and Ifn, for the nodes that use the FD scheme and Ibl and Ibn
for the UEs that use the BR transmissions. Therefore, when node i is in LOS with node j, we

can write the SINR, conditioned to Ifl, Ifn, Ibl, Ibn, as in (1).

The beamforming gain of the transmitter and the receiver are gi and gj , respectively. These

are computed in according to the ideal sectored antenna model [14], which is given by: gi =

gj =
2π
θBW

in the main lobe, and 0 otherwise. The term hl(i, j) is the path loss on link ij when

this is in LOS. The transmit and the noise power are pt and pN , respectively. The terms pr/l(i, j)

and pr/n(i, j) represent the received power by node j from node i, when the first is in LOS

and NLOS, respectively. Note that similar expressions of the SINR can be derived also in case
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of BR and NLOS. Finally, the success probabilities for a packet sent on link ij by using FD

and BR transmissions are represented by the terms P f
ij/If ,Ib and P b

ij/If ,Ib , respectively. Here,

we consider only the conditioning on the sets If and Ib, since we average over all possible

scenarios for the LOS and NLOS link conditions. The expression for the FD transmission and

N UEs is given in Appendix A.

III. PERFORMANCE ANALYSIS FOR THE RELAY QUEUE

In order to compute the network throughput, in this section, we evaluate the arrival rate, λ,

for the queue at R, for which we further analyze the service rate, µr, and the stability condition.

Namely, we present the results for two UEs to give insights to understand the throughput analysis,

which is generalized for N UEs in Section IV. First, similar to [4], we compute λ as follows:

λ = P (Q = 0)λ0 + P (Q 6= 0)λ1, (2)

where λ0 and λ1 are the arrival rates at R when the queue is empty or not, which occur with

probabilities P (Q = 0) and P (Q 6= 0), respectively. Namely, when the queue is not empty, R

may transmit and interfere with the other transmissions to the mmAP. Therefore, by considering

all the possible combinations for the two UEs scenario, where R can receive at maximum

two packets per timeslot, we can compute λ0 and λ1. Note that the definition of the sets If
and Ib can be simplified since the UEs are symmetric. Therefore, it is sufficient to indicate

the number of UEs that are interfering and whether R is transmitting, i.e., we indicate with

{|If |, r}f and {|If |}f the sets of interferers that use FD transmissions when R is transmitting

or not, respectively, and with {r}f the set of interferers when only the relay is transmitting.

Therefore, we obtain:

λ0 = 2quququfqurP
f
ur + 2quququbP

b
urP

b

ud

+ q2uq
2
ufq

2
urq

2
ur

[
2P f

ur/{1}fP
f

ur/{1}f

+ 2
(
P f
ur/{1}f

)2]
+2q2uq

2
ufqurqudP

f
ur

+ 2q2uq1fqubqur

[
P f
ur/{1}b

(
1− P b

ur/{1}fP
b

ud

)
+ P

f

ur/{1}bP
b
ur/{1}fP

b

ud + 2
(
P b
ur/{1}fP

b

ud

)2]
+ 2q2uqubqufqudP

b
urP

b

ud/{1}f

+ q2uq
2
ub

[
2P b

ur/{1}bP
b

ud/{2}b

(
1− P b

ur/{1}bP
b

ud/{1}b

)
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Fig. 2: The DTMC model for the two UEs case.

+ 2
(
P b
ur/{1}bP

b

ud/{1}b

)2]
, (3)

where, qu, qub, quf , qud, and qur are introduced in Section II-A. Similarly, we obtain that λ1 =

qrλ0+qrAr, whereas the service rate is µr = qrBr. The terms Ar and Br are given in Appendix B.

Now, we derive the condition for the queue stability, which is used to determine the throughput.

By applying the Loyne’s criterion [15], we can obtain the range of values of qr for which the

queue is stable by solving the equation λ1 = µr. Thus, we have that the queue at R is stable if

and only if qrmin
< qr ≤ 1, where qrmin

is given by:

qrmin
=

λ0
λ0 +Br − Ar

. (4)

The evolution of the queue at the relay can be modelled as a discrete time Markov Chain

(DTMC), as reported in Fig. 2. The terms p0k and p1k are the probabilities that the queue size

increases by k packets, in a timeslot, when the queue is empty or not, respectively, and their

expressions are reported in Appendix C. Finally, by omitting the details for sake of space,

we compute P (Q = 0) by considering the Z-transformation of the steady-state distribution

vector [16]:

P (Q = 0) =
p1−1 − p11 − 2p12

p1−1 − p11 − 2p12 + λ0
. (5)

IV. THROUGHPUT ANALYSIS

In this section, we derive the network aggregate throughput, T , for N UEs by generalizing

the results obtained in Section III. In particular, we distinguish between two cases. First, when

the queue is stable, T is given by:

T = NTu = N(Tud + Tur), (6)
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where Tu represents the per-user throughput. This is composed by two terms, Tud and Tur,

which represent the contributions to Tu given by the packets received by the mmAP or by R,

respectively. Second, when the queue at R is unstable, the aggregate throughout is:

T = NTud + µr. (7)

In particular, the expressions for Tud and Tur can be derived as follows. We indicate with m the

number of UEs that interfere and with i the number of those that use FD transmissions (m− i

UEs use the BR scheme). A certain number, j, of FD interferers transmit to R and i− j to the

mmAP. Therefore, Tud and Tur are given by:

Tud =
(
1− qrP (Q 6= 0)

)
T 0
ud + qrP (Q 6= 0)T 1

ud, (8)

Tur = ququfqur

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

×
m∑
i=0

(
m

i

)
qiufq

m−i
ub

i∑
j=0

(
i

j

)
qjurq

i−j
ud

× P f
ur/{j}f ,{m−i}b +

(
1− qrP (Q 6= 0)

)
T 0
ur

+ qrP (Q 6= 0)T 1
ur, (9)

where P (Q = 0), derived by following the same method used in Section III, but for N UEs, is

given by:

P (Q = 0) =
p1−1 −

∑N
k=1 kp

1
k

p1−1 −
∑N

k=1 kp
1
k + λ0

. (10)

In this case, p1k, p
1
−1 and λ0 have the same meaning as for the two UEs case, but different values.

The terms T 0
ud and T 1

ud represent the contribution to Tu given by the packets sent to the mmAP

(when R is interfering or not) and are given by:

T 0
ud = ququfqud

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

m∑
i=0

(
m

i

)
qiufq

m−i
ub

×
i∑

j=0

(
i

j

)
qjurq

i−j
ud P

f
ud/{i−j}f ,{m−i}b

+ ququb

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

m∑
i=0

(
m

i

)
qiufq

m−i
ub

×
i∑

j=0

(
i

j

)
qjurq

i−j
ud × P

b
ud/{i−j}f ,{m−i}b , (11)
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T 1
ud = ququfqud

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

m∑
i=0

(
m

i

)
qiufq

m−i
ub

×
i∑

j=0

(
i

j

)
qjurq

i−j
ud P

f
ud/{i−j,r}f ,{m−i}b

+ ququb

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

m∑
i=0

(
m

i

)
qiufq

m−i
ub

×
i∑

j=0

(
i

j

)
qjurq

i−j
ud P

b
ud/{i−j,r}f ,{m−i}b . (12)

Finally, we derive the terms T 0
ur and T 1

ur:

T 0
ur = ququb

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

×
m∑
i=0

(
m

i

)
qiufq

m−i
ub

i∑
j=0

(
i

j

)
qjurq

i−j
ud

× P b
ur/{j}f ,{m−i}bP

b

ud/{i−j}f ,{m−i}b . (13)

T 1
ur = ququb

N−1∑
m=0

(
N − 1

m

)
qmu q

N−1−m
u

×
m∑
i=0

(
m

i

)
qiufq

m−i
ub

i∑
i=0

(
i

j

)
qjurq

i−j
ud

× P b
ur/{j}f ,{m−i}bP

b

ud/{i−j,r}f ,{m−i}b . (14)

V. NUMERICAL RESULTS

In this section, we provide the numerical evaluation of the analysis derived in the previous

sections. In order to compute the LOS and NLOS probabilities and the path loss, we use the

3GPP model for urban micro cells in outdoor street canyon environment [17]. More precisely,

the path loss depends on the height of the mmAP, 10 m, the height of the UE, 1.5 m, the carrier

frequency, fc = 30 GHz and the distance between the transmitter and the receiver. The transmit

and the noise power are set to Pt = 24 dBm and PN = −80 dBm, respectively. Then, the SINR

in (1) and the success probability in (15) are numerically computed.

Hereafter, we show the network throughput (T ) while varying several parameters. Unless

otherwise specified, we set dur = 30 m, dud = 50 m, γ = 10 dB and α = 0.1. Moreover, we

set either θBW = 5◦ or θBW = θrd for the FD and BR transmissions, respectively. In Fig. 3, we
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Fig. 3: T while varying N for several values of qu, with θrd = 30◦ and qur = 0.5. Solid and dotted lines are used

for the range of UEs where the queue is stable or unstable, respectively.

show T while varying the number of UEs for several UE transmit probability values, i.e., qu.

In particular, we use solid lines when the queue at R is stable (cf. Eq. (6)) and the dotted lines

when the queue is unstable (cf. Eq. (7)). For qu = 0.1 the queue is always stable, in contrast, for

qu = 0.5 and qu = 0.9 the queue becomes unstable at N = 7 and N = 3, respectively. Above

a certain number of UEs, T reaches almost the maximum value and then it start decreasing.

Namely, for qu = 0.5 and qu = 0.9, the queue becomes again stable at N = 10 and N = 6,

respectively, because high values of N and qu lead to high interference that decreases the number

of packets successfully received by R and the mmAP.

In Fig. 4, we show the T while varying the probability of using the FD scheme, quf , and

θrd. Hereafter, we set qu = 0.1 and N = 10 and we can observe that the optimal choice of quf

depends on θrd. Namely, for small values of θrd, BR transmissions are more preferable, which

correspond to small values of quf . Indeed, in this case, we can use beams with high beamforming

gain to transmit simultaneously to R and the mmAP. In contrast, for higher values of θrd, the

optimal value of quf is 1 that corresponds to always use the FD scheme. Furthermore, it is

possible to observe that for quf = 1, T increases with θrd. This is caused by the interference of

R on the communications between the UEs and the mmAP.

This phenomenon can be better observed in Fig. 5, which shows both the aggregate throughput

received by the mmAP and by R, i.e., Td and Tr, for several values of quf while varying θrd.

Larger values of θrd correspond to longer distances between R and the mmAP, i.e., drd. For

quf = 1, the success probability for a packet transmitted from R to the mmAP, and so Tr (dotted

lines), are barely affected by increasing the link length. Indeed, the link R-mmAP is always in

LOS. In contrast Td (solid lines) increases for wider θrd because the interference caused by R
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Fig. 5: Td (solid lines) and Tr (dotted lines) with varying θrd for several values of quf and qur = 0.5.

decreases. For 0 < quf < 1, Td and Tr have a non-monotonic behavior. Initially, as θrd increases,

Td decreases because of two reasons. First, the beamforming gain of the BR transmissions

decreases, and so the success probability for a packet sent by using the BR scheme. Second,

since the packets that are not successfully received by the mmAP may increase the number of

packets in the queue at R, both Tr and the interference at the receiver side of the mmAP (caused

by the relay) also increase. However, above a certain value of θrd, Tr starts decreasing because

wider beams with lower beamforming gains are not enough to overcome the path loss. Fig. 6

shows similar results of Fig. 4, but with a higher SINR threshold, i.e., γ = 20 dB. In this case,

we can observe that the best transmission strategy is always the FD scheme, even for low value

of θrd. The reason behind is that the beamforming gain provided by the BR scheme leads to

low success probabilities with respect to the FD transmission.

To give further insights into the FD scheme, we fix quf = 1, i.e., UEs always use the FD

scheme, and increase the distances, i.e., dur = 50 m and dud = 200 m. In Fig. 7, we show

T when vary θrd and qur, which is the probability to transmit to the relay. In contrast to the
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previous case (Fig. 4 and Fig. 6), T decreases as θrd increases. Indeed, as drd increases, the

high link path loss between R and the mmAP reduces the success probability for a packet sent

from R to the mmAP. This has mainly two effects: i) it decreases the interference of R on the

communications between the UEs and the mmAP and ii) it reduces the relay’s service rate µr,

which makes the queue at R not stable when qur is above certain values (which is qur = 0.3 for

θrd = 30◦ and decreases as θrd increases). Furthermore, we can also observe that for low values

of drd, hence θrd, the highest throughput is given by qur = 1, whereas increasing the value of

drd, hence θrd, it is better to always send packets to the relay, i.e., qur = 0.

Finally, in Fig. 8 we show T while varying quf for several values of dur and dud, when

θrd = 30◦. It is possible to observe that for short distances (blue curve), the optimal value of

quf is smaller than 0.5. Indeed due to the small path loss values of the links UE-mmAP and

UE-R, it is always favorable to use the BR scheme. In contrast, when the distances increase,

the transmissions need higher beamforming gain and therefore the FD scheme is preferable.

VI. CONCLUSION

In this work, we have presented a throughput analysis for relay assisted mm-wave wireless

networks, where the UEs can transmit by using either a FD or a BR transmission. In particular,

we have evaluated the performance of the queue at the relay by deriving the stability conditions

as well as the arrival and service rates. The numerical evaluation shows that the interference

caused by the relay and the link path loss represent the main impediments for the success prob-

ability, hence the throughput, in case of short and long distances among the nodes, respectively.

Furthermore, results show that the optimal transmission strategy (values of quf and qur) highly

depends on the network topology, e.g., dud, dur and θrd.

As expected, it is not always beneficial to use narrow beams (FD) compared to wider beams

(BR). As a matter of fact, for short distances and beamwidth of 30◦, a BR transmission is

preferable, although it provides a lower beamforming gain. When the distances or the SINR

threshold increase, then the FD scheme should be chosen. Future work will investigate the

behavior of the throughput as well as of the delay when taking additional aspects into account,

such as the inter-beam interference cancellation technique and the beamforming alignment phase.

APPENDIX A

Here, we report the expression for the success probability for the link ij with N symmetric

UEs, conditioned to the sets If and Ib. We average over all the possible scenarios for the LOS
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Fig. 7: T while varying θrd and qur for quf = 1, dur= 50 m and dud = 200 m.

and NLOS links. We consider that k and h UEs over |If | and |Ib| interferers, respectively, are

in LOS. Thus, the success probability is as follows:

P f
ij/If ,Ib = P (LOSij)P (SINRf

ij/If ,Ib ≥ γ|LOSij)

+ P (NLOSij)P (SINRf
ij/If ,Ib ≥ γ|NLOSij)

= P (LOSij)

[ |If |∑
k=0

(
|If |
k

)
P (LOSij)kP (NLOSij)|If |−k

×
|Ib|∑
h=0

(
|Ib|
h

)
P (LOSij)hP (NLOSij)|Ib|−h (15)

× P (SINRf
ij/Ifl,Ifn,Ibl,Ibn ≥ γ|LOSij)

]

+ P (NLOSij)

[ |If |∑
k=0

(
|If |
k

)
P (LOSij)kP (NLOSij)|If |−k

×
|Ib|∑
h=0

(
|Ib|
h

)
P (LOSij)hP (NLOSij)|Ib|−h
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× P (SINRf
ij/Ifl,Ifn,Ibl,Ibn ≥ γ|NLOSij)

]
.

The expressions P (SINRf
ij/If ,Ib ≥ γ|LOSij) and P (SINRf

ij/If ,Ib ≥ γ|NLOSij) are the proba-

bilities, conditioned to the specific scenarios of interferers, If and Ib, that the received SINR is

above γ, when link ij is in LOS and NLOS, respectively.

APPENDIX B

In this appendix, we report the terms Ar and Br, which are used in Section III for the

expressions of λ1 and µr, respectively, and can be computed similarly to λ0:

Ar = 2quququfqurP
f
ur + 2quququbP

b
urP

b

ud

+ q2uq
2
ufq

2
urq

2
ur

[
2P f

ur/{1}fP
f

ur/{1}f

+ 2
(
P f
ur/{1}f

)2]
+2q2uq

2
ufqurqudP

f
ur (16)

+ 2q2uq1fqubqur

[
P f
ur/{1}b

(
1− P b

ur/{1}fP
b

ud/{r}f

)
+ P

f

ur/{1}bP
b
ur/{1}fP

b

ud/{r}f + 2
(
P b
ur/{1}fP

b

ud/{r}f

)2]
+ 2q2uqubqufqudP

b
urP

b

ud/{1,r}f + q2uq
2
ub

×
[
2P b

ur/{1}bP
b

ud/{r}f ,{1}b

(
1− P b

ur/{1}bP
b

ud/{r}f ,{1}b

)
+ 2
(
P b
ur/{1}bP

b

ud/{r}f ,{1}b

)2]
.

Br = P f
rd

(
q2u + 2quququfqur + q2uq

2
ufq2fq

2
ur

)
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+ P f
rd/{1}f

(
2quququfqud + 2q2uq

2
ufqudqur

)
+ P f

rd/{1}b

(
2quququb + 2q2uqubqufqur

)
(17)

+ P f
rd/{2}f q

2
uq

2
ufq

2
ud + P f

rd/{1}f ,{1}b2ququfqubqud

+ P f
rd/{2}bq

2
uq

2
ub.

APPENDIX C

Hereafter, we present the transition probabilities p0k and p1k for the two UEs case.

p1−1 = qr

[
P f
rd

(
q2u + 2quququfqurP

f

ur

+ (ququfqurP
f

ur/{1}f )
2
)
+P f

rd/{1}f

×
(
2quququfqud + 2q21q

2
ufqudqurP

f

ur

)
(18)

+ P f
rd/{1}b

(
2quququb(1− P b

urP
b

ud/{r}f )

+ 2q2uqubqufqur(1− P b
ur/{1}fP

b

ud/{r}f )P
f

ur/{1}b

)
+ P f

rd/{1}f ,{1}b2q
2
uqufqubqud(1− P b

urP
b

ud/{1,r}f )

+ P f
rd/{2}b

(
ququb(1− P b

ur/{1}bP
b

ud/{r}f ,{1}b)
)2]

+ P f
rd/{2}f q

2
uq

2
ufq

2
ud.

p01 = 2quququfqurP
f
ur + 2quququbP

b
urP

b

ud

+ 2q2uq
2
ufq

2
urP

f
ur/{1}fP

f

ur/{1}f + 2q2uq
2
ufqurqudP

f
ur

+ 2q2uqufqubqur

[
P f
ur/{1}b

(
1− P b

ur/{1}fP
b

ud

)
(19)

+ P
f

ur/{1}bP
b
ur/{1}fP

b

ud

]
+2q2uqubqufqudP

b
urP

b

ud/{1}f

+ q21q
2
ub

[
2P b

ur/{1}bP
b

ud/{1}b

(
1− P b

ur/{1}bP
b

ud/{1}b

)]
.

p11 = qrp
0
1 + qr

[
2quququfqurP

f
urP

f

rd

+ 2quququbP
b
urP

b

ud/{r}fP
f

rd/{1}b

+ 2q21q
2
ufqudqurP

f
urP

f

rd/{1}f

+ 2q2uqufqubqudP
b
urP

b

ud/{1,r}fP
f

rd/{1}f ,{1}b

+ q2uq
2
ufq

2
ur

(
P f
ur/{1}fP

f

ur/{1}fP
f

rd + (P f
ur/{1}f )

2P f
rd

)



16

+ q2uq
2
ub

(
2P b

ur/{1}bP
b

ud/{r},{1}P
f

rd/{2}b

× (1− P b
ur/{1}bP

b

ud/{r}f ,{1}b) (20)

+ (P b
ur/{1}bP

b

ud/{r}f ,{1}b)
2P f

rd/{2}b

)
+ 2q2uqubqufqur

(
P b
ur/{1}fP

b

ud/{r}fP
f

ur/{r}f ,{1}bP
f

rd/{1}b

+ (1− P b
ur/{1}fP

b

ud/{r}f )P
f
ur/{1}bP

f

rd/{1}b

+ P b
ur/{2}fP

b

ud/{r}fP
f
ur/{1}bP

f
rd/{1}b

)]
.

p02 =
(
ququfqurP

f
ur/{1}f

)2
+
(
ququbP

b
ur/{1}bP

b

ud/{r}f ,{1}b

)2
+ 2q21qubqufqurP

b
ur/{1}fP

b

udP
f
ur/{1}b . (21)

p12 = qrp
0
2 + qr

[(
ququfqurP

f
ur/{1}f

)2
P
f

rd

+
(
ququbP

b
ur/{1}bP

b

ud/{r}f ,{1}b

)2
P
f

rd/{2}b (22)

+ 2q21qubqufqurP
b
ur/{1}fP

b

udP
f
ur/{1}bP

f

rd/{1}b

]
.
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