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0 Executive Summary  

This report details the work progress within work package one Network Anticipation of the 

ACT5G project. More specifically, the document provides information of the conducted and 

expected work of early-stage researcher (ESR) one and two. The document first gives an over-

view of the focus area and research topics. Technical details of the work are then presented by 

means of research paper to be published in 2017. 
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1 Work Plan and Progress of ESR 1 

The research activities of the ESR 1 include the development of prediction and anticipation al-
gorithms based on the analysis of information coming from real mobile radio networks, includ-
ing data originating form network counters, probes and drive tests. The main goals of the ESR 
are twofold: first, to design and apply machine learning tools which can be exploited to derive 
compact and insightful Key Performance Indicators (KPIs), second to leverage the knowledge 
extracted from real data to anticipate and predict the behaviour of the mobile radio networks 
in order to optimize their performances 

In this context, the ESR 1 Daniel Martin Weibel started working in two different directions: 
first, to get acquainted with quantitative tools of machine learning, he participated in a re-
search activity to exploit real data traces coming IEEE 802.11-based campus networks to infer 
the habits and behaviour of network users; working on this research line Daniel Martin Weibel 
acquired skills in manipulating network-based data and using supervised and unsupervised 
machine learning tools. The research activity generated a publication which is included in the 
Appendix.  

In parallel, Daniel Martin Weibel work to narrow down a research line of data-driven resource 
allocation in mmWave mobile radio networks, with the main goal to design resource allocation 
algorithms by leveraging large data sets of physical layer measures to be collected in real 
mmWave testbeds.  

While working in this direction Daniel Martin Weibel notified the project management board 
about his intention to quit the project and the related PhD programme at PoliMI. Daniel Mar-
tin Weibel then formally quit his collaboration with the project on November, 1 2016.  

A new recruiting process was then launched, leading to the recruiting of a new Early Stage Re-
searcher 1, Claudia Parera Sotolongo. The recruiting process closed in February 2017 and the 
new ESR 1 will officially join the PhD program in Information Technology at the beneficiary 
Politecnico di Milano on May 1, 2017. Claudia is expected to follow the direction of the use of 
machine learning for the analysis of large quantity of quality-indicating data from mobile net-
works for anticipation. 
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2 Work Plan and Progress of ESR 2 

The research objective of ESR 2 consists in the development of models and algorithms that are 
able to estimate and predict network performance for 5G systems. To this end, the work inves-
tigates the prediction of network coverage, rate, and other performance indicators at various 
time scales, in order to improve the operation quality and efficiency with an anticipatory-
enabled framework. A number of tools, such as stochastic geometry and compressive sensing, 
are of interest to be considered for the purpose of prediction. Thus the ESR is expected to ac-
quire fundamental knowledge of such tools, as well as to apply them to specific network sce-
narios. The study shall address the timescale, accuracy, and complexity of the tools for the 
scenarios in question. 

Having the above in mind, ESR 2, Cristian Tatino, has first performed a survey of the literature 
on estimation and prediction. The next step has been the identification of a 5G system setup 
to focus the study on. After several discussions with the supervisors, Cristian has chosen milli-
metre wave (mmWave) system for the first study of prediction techniques. The type of sys-
tems is part of the 5G evolution, by means of transmissions using frequency in the range of 30-
300 GHz. As there is a large amount of spectrum resource available, the data rate can reach 
very high levels. On the other hand, at such high frequencies, large path loss and link blockage 
effects pose major challenges. Thus models predicting the performance of mmWave are highly 
development for understanding the potential (and possible limitations) of mmWave.  

Based on the knowledge acquired stochastic geometry, Cristian Tatino has developed a novel 
stochastic model for characterizing the coverage probability of a beam for outdoor mmWave 
systems. A feature of this analytic model is the consideration of reflection. In mmWare sys-
tems, the coverage is mainly provided by the beam directing to the user. However, reflections 
can be exploited in non-line-of-sight conditions to mitigate the blocking effect of obstacles ly-
ing on the direct path between the base station and the user. Comparing the numerical results 
obtained by the analytical model with simulations, it is concluded that the proposed model is 
able to capture of relation between coverage and the distribution and density of obstacles as 
well as the width of the beam used. The work has resulted in a conference paper, accepted for 
presentation and publication by the Spatial Stochastic Models for Wireless Networks 
(SpaSWiN) workshop of the 15th International Symposium on Modeling and Optimization in 
Mobile, Ad Hoc, and Wireless Networks (WiOPT) that will take place in May, 2017.  

As next steps, Cristian Tatino is 1) extending the model for additional scenarios, such as multi-
connectivity, and 2) considering beam design consisting of the beamwidth, direction, and 
power per beam, along with allocation of the beams to users taking into account the anticipa-
tory aspect. 
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3 Appendices:  

- Understanding the WiFi Usage of University Students 

- Beam Based Stochastic Model of the Coverage Probability in 5G Millimeter 

Wave Systems 
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Abstract

In this work, we analyze the use of a WiFi network deployed in a large-scale technical university.

To this extent, we leverage three weeks of WiFi traffic data logs and characterize the spatio-temporal

correlation of the traffic “signals” at different granularities (each individual access point, groups of

access points, entire network). The spatial correlation of traffic signals across nearby access points

is also assessed. Then, we search for distinctive fingerprints left on the WiFi traffic by different

situations/conditions; namely, we answer the following questions: Do students attending a lecture use

the wireless network in a different way than students not attending a lecture?, and Is there any difference

in the usage of the wireless network during architecture or engineering classes? A supervised learning

approach based on Quadratic Discriminant Analysis (QDA) is used to classify empty vs. occupied rooms

and engineering vs. architecture lectures using only WiFi traffic logs with promising results.

Index Terms

WiFi data analysis, user behaviour analysis,
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I. INTRODUCTION

Wireless local area networks (WLANs) based on the IEEE 802.11 standard family (i.e.,

WiFi) are an essential building block to provide widespread wireless connectivity in diverse

indoor/outdoor scenarios. The cities we live in, our workplaces, hospitals and other public and

private buildings are equipped with WiFi networks to provide hot spot or capillary wireless

connectivity.

The reasons for the success of WiFi range from the use of unlicensed spectrum to their ease

of deployment and management [1]. Nowadays, WiFi connectivity is available both in users’

terminals (laptops, handheld devices, electronic gadgets) as well as in embedded devices and

appliances. To this extent, WiFi plays a key role in the provision of connectivity in urban

environments and to fully realize the vision of smart cities.

Besides their primary role of providing connectivity, WiFi networks and devices nowadays

come with powerful monitoring systems able to collect and store large quantities of data on the

behaviour of the network itself: traffic load, number of users, quality of the wireless signal etc.

Such data, which is primarily used for network management, optimization, and fine-tuning, is

also a “goldmine” for offering byproduct services; indeed, WiFi logs can be used to provide

location-based services by properly localizing the users and/or to estimate flows and spatial

distributions of people during events or at shopping malls. Moreover, WiFi logs can be coupled

with other types of context data and, more generally, can be used to assess the behaviour of users.

Therefore, a careful analysis of such data provides valuable information that can be used for

several purposes. In particular, in the context of smart cities and smart buildings, the availability of

techniques for extracting high-level information from network traces may help city and building

administrators to better understand and react to the citizens’ needs.

In this work, we focus on a particular type of building present in many cities in the world,

namely a university campus building. We analyze the data coming from the local WiFi network

of Politecnico di Milano, a large-scale technical university located in Italy and we provide the

following contributions: (i) we propose a temporal and spatial characterization of the WiFi traffic;

(ii) we leverage the WiFi traffic traces to answer the following questions: Do students attending

a lecture use the wireless network in a different way than students not attending a lecture?, and

Is there any difference in the usage of the wireless network during architecture or engineering
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classes? To answer these two questions we first propose a set of features which combine different

attributes of the WiFi traffic (number of users, number of active connections, duration of active

connections, etc.). Then we build up a labeled data set by exploiting information from the

facility management department database which allows us to know if a room is occupied by a

given lecture in a given time slot. Finally we propose a supervised learning approach based on

Quadratic Discriminant Analysis (QDA) to classify empty vs. occupied rooms and engineering

vs. architecture lectures by observing related WiFi traffic.

This work is organized as follows: Section II reviews the relevant literature on WiFi network

data analysis; the reference scenario and spatio-temporal analysis of the WiFi traffic is presented

in Section III. Section IV describes the supervised learning approach to classify empty vs

occupied rooms and engineering vs architecture lectures. Section V concludes the manuscript

and comments on ongoing/future work.

II. RELATED WORK

The analysis of data traces extracted from WiFi networks has attracted much attention in the

scientific community over the last decade. The relevant work in the field can be classified by

the main target of the data analysis.

The first class focuses on general performance analysis and characterization of WiFi-based

wireless networks with the goal of medium/long-term network optimization. In their seminal

work [2], Kotz and Essien focus on the analysis of a WiFi campus network composed of 476

Access Points. The reference data set spans a two-month period and is composed of traffic- and

association-related information collected through SNMP polling and SYS log messaging. The

active data collection is further complemented by data collected by passive sniffers to capture

back-end traffic. The collected data set is leveraged to perform a rather complete analysis on

the traffic load characteristics (per user, per access point traffic, traffic variability over time,

per building traffic), the traffic type characteristics (traffic breakdown per application) and user

mobility (number of visited Access Points while associated). A similar analysis is performed

on the same WiFi network in [3] after two years to assess the changes over time of the

aforementioned performance figures. A performance analysis of a WiFi campus network is also

targeted in [4].

Calabrese et al. use in [5] the wifi traces collected within the MIT WiFi network (3000
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access points) to perform spatio-temporal analysis of the traffic flowing through the access

points. Moreover, the information on the number of connected users per access point over

time is used to classify location-dependent network behavior; namely, the authors show that

by applying standard clustering techniques, location-dependent “fingerprints” can be determined

for the network behavior (number of users, traffic).

The analysis of a corporate WiFi network is addressed in [6]; the authors collect a one-month

data trace by polling every 5 minutes via SNMP 177 Access Points over three distinct corporate

buildings. Besides analyzing the traffic characteristics, the authors also propose a clustering

approach for the users based on two features: the prevalence which accounts for the time a user

spends at an access point and the persistence which captures the total consecutive time a user

spends at a AP.

The analysis of outdoor commercial WiFi networks is addressed in [7], [8] and [9]. In [7],

Blinnet al. consider a Verizon WiFi Hot Spot network composed of 312 access points running

IEEE 802.11b which are polled via SNMP every 5 minutes to obtain traffic and load measures.

The proposed analysis is mainly targeted to characterize the access point traffic distribution

over time, further assessing the spatial correlation existing among adjacent access points. A user

mobility analysis is also carried out by leveraging the same clustering framework proposed in

[6]. Afanasyev et al. [8], [9] address the performance analysis of the Google WiFi network in

Mountain View (CA), composed of 500 access point. Different from the previous works, the

reference wireless network architecture also has a wireless mesh extension interconnecting the

access points. The proposed analysis has three main contributions: (i) the characterization of

per-user traffic distributions, (ii) the classification of users in terms of their pattern in network

usage and generated traffic (sporadic users, residential users, etc.), (iii) the assessment of users

mobility in terms of travelled distance distributions.

Ganji et al. leverage in [10] campus WiFi data traces collected through SNMP polling and

SYSlog messaging to evaluate the potential savings of duty cycling management policies of the

access points in large-scale campus wireless networks.

A second class of work explicitly targets the assessment of human mobility and the develop-

ment of data-driven mobility models [11]. Song et al. takes as reference the same data traces

used in [2] to build up and validate location predictors for WiFi users of campus networks; two

approaches are introduced based on Markovian models and Lempel-Ziv predictors. Along the



5

same lines, in [12] and subsequent studies [13], [14], Kim et al. introduce and evaluate mobility

models for campus WiFi users which are developed and trained on WiFi data traces.

Mobility analysis in hospitals is the main focus in [15] and [16], where movements of people

are estimated by leveraging the data coming from a WiFi network deployment composed of

798 access points at Aarhus hospital. Besides characterizing the users mobility, the authors also

propose a clustering analysis to classify different types of users (medical staff, visitors, patients,

etc.).

The third and last class of works include the literature where WiFi data traces are mainly

leveraged to classify the type of users. In [17] four months of WiFi traces are collected in a

campus environment and used to characterize the different behavior in terms of mobility between

smartphones and laptops. Gember et al. extend the comparative analysis between handheld and

non-handheld devices by characterizing the different users behaviors in terms of type of generated

traffic; namely, full packet traces collected in a WiFi campus environment are collected and

analyzed to assess the applications/traffic breakdown for handheld and non-handheld devices.

Recently, Wei et al. analyzed in [18] the impact of the high penetration of handheld devices

in WiFi campus networks. A one year-long DHCP log is used along with a one-month flow

level data trace to profile handheld and non-handheld devices in terms of mobility behavior and

traffic characteristics.

According to this characterization, this paper stands in the third class.

III. SCENARIO

This work analyses network data traces extracted from the wireless network of the architecture

department building of the Politecnico di Milano (PoliMi) university, located in Milan, Italy. The

wireless network under study is composed of 28 different access points (APs) located on four

different floors of the building and covering rooms devoted to lectures as well as offices, corridors

and other public spaces. The APs support the AirWave Management Platform (AMP), that allows

to observe every device and user connected to the network. In particular, the AMP allows to

sample the bandwidth usage and the number of clients connected for each APs every 5 minutes.

In this work, we focus on a period of three weeks, from the 16th of November, 2015 to the

6th of December, 2015. This period does not contain any national holiday, therefore it represents

well the “steady-state” behaviour of the wireless network in terms of number of clients connected
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Fig. 1. (a) Cumulative downlink/uplink usage over one week; (b) Downlink/uplink usage of one particular AP over the same

week

and average usage. For each access point, the uplink/downlink bandwidth usage and the number

of clients connected were sampled and stored every 5 minutes, for a total of 12×24×21 = 6048

data points per AP. Additionally, the list of devices connected to each AP is downloaded and

stored in a database. For each connected device, the following information is stored and updated

every 5 minutes: device MAC address, timestamp of the association with the AP, duration of

the connection, average and variance of the signal quality of the connection [dB] as well as

average and variance of the bandwidth usage [kbps]. Over the three weeks, a total of 27538

unique devices were observed, generating 300681 different connection events.
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Figure 1(a) shows the cumulative uplink/downlink bandwidth usage summed over all the APs

during one of the selected three weeks. As one can see, such cumulative measures show a very

nice periodic behaviour: the network usage is very low during the night, increases rapidly in the

morning, experiences a short decline during lunch break and fades out during the afternoon with

a short constant period of about two hours during the evening. This pattern is clearly associated

with the behaviour of students and employees working in the building under consideration, and

repeats unchanged every day from Monday to Friday. The behaviour during the weekend is

similar to the one during work days, although with fewer clients connected and therefore less

bandwidth usage. The same behaviour is obtained for the other two weeks in the dataset, which

are not shown here for space reasons. Unfortunately, the nice periodic behaviour observed on the

cumulative data is no more visible when analysing the traces of a particular AP. As an example,

Figure 1(b) shows the downlink and uplink usage measured on an AP located in a room used

for lectures throughout the week. As one can see, the bandwidth usage is different from day

to day and no periodic pattern (except from the trivial night/day differences) may be found.

Such consideration, that periodicity is lost when going from cumulative to individual AP data,

is similar to what was found in [19] for cellular networks.

In order to provide a more detailed analysis of the behaviour of the network, we investigate

how the network load varies both spatially and temporally.

A. Temporal correlation analysis

As a first step, we compute the sample Pearson correlation coefficient ri(t) of the down-

link/uplink usage of the i-th AP with a version of itself delayed by t samples (the so called

lagged correlation). This is done to determine if some temporal pattern still exists in individual

AP data. Figure 2 shows the average lagged correlation coefficient for the downlink bandwidth

usage, where the average is taken over all APs. As one can see, the average temporal correlation is

low, with peaks occurring every 12 and 24 hours according to the diurnal human activity pattern.

It is interesting to note that the correlation coefficient has local maxima in correspondence to

lags 168 and 336, that is after one and two weeks. This can be explained taking into account the

schedule of lectures in some of the rooms covered by the APs, which has a periodicity of one

week. The 95% confidence interval (red dashed line) is very narrow, meaning that all APs show

similar correlation coefficients. We repeated the same test for the uplink traffic (not shown here
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Fig. 2. Temporal correlation averaged over all APs. Local maxima are visible after 7 and 14 days, according to the academic

calendar.

for space reasons), finding weaker temporal correlation although with the same periodic pattern.

B. Spatial correlation analysis

We also analyse the spatial correlation between different APs, that is, we compute the cor-

relation coefficient ri,j for all possible pairs (i, j). Figure 3 shows the computed correlation

coefficients for the downlink and uplink traffic, where blue indicates no correlation (ri,j = 0)

and yellow indicates maximum correlation (ri,j = 1). The four red squares indicate correlation

values of APs located on the same floor (basement, ground, first and second floor, from the top

left) and the AP with index 13 is located alone on a mezzanine. Some interesting observations

can be made from the inspection of Figure 3:

1) The maximum correlation is observed among APs on the first and second floor, which

are also those where most of the classrooms are located. Overall, the maximum spatial

correlation value for the downlink traffic is 0.7, while it is 0.5 for the uplink case (again

indicating a weaker correlation in the uplink usage).

2) Conversely, APs located in the basement and on the ground floor, exhibit weak spatial

correlation.

3) Some particular APs (rows 8, 11, 13 and 17) show very low correlation values with all other

APs. A more thorough analysis revealed that these APs show the lowest uplink/downlink

traffic usage and the lowest average signal quality towards connected devices. This may
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suggest that either they are malfunctioning or that their positioning may be changed to

improve their performance.

IV. CLASSIFICATION

The wireless network under study is located in a building belonging to the Department of

Architecture of PoliMi university. This building contains several classrooms that are used for

teaching classes from both the Architecture and Engineering courses of study. Each classroom

is different in size (maximum number of students it may host) and is used for lectures only in

specific time slots during each day, according to the academic calendar. When a room does not

host a lecture, it may be still used by students for studying or just for passing time between a

lecture and the following one.

In such a scenario, we rely on the data available AirWave Management Platform and corre-

sponding to those APs located in the classrooms to answer two different questions:

1) Is there a difference between the WiFI usage inside rooms during lecture times and “idle”

times of these rooms?

2) Is there a difference between the WiFi usage inside rooms during architecture lectures and

engineering lectures in these rooms?
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The answer to the first question is somehow expected as positive, as it seems logical to

assume that students attending a class will pay more attention to the teacher rather than to their

smartphones or laptops. At the same time, a user studying or passing time in an empty room may

be using its wireless connection actively. Conversely, the answer to the second question seems

more unpredictable: although engineering and architecture students tend to consider themselves

as different “species”, the way they behave during classes in terms of network usage may be

the same.

A. Feature extraction

To answer these questions, we take the following approach. First, we rely on the academic

calendar to identify when and in which classroom architecture and engineering lectures are

given. This allows to extract several “time slots” from the data traces of the APs located in the

rooms where lectures are given, where each time slot corresponds to either a particular lecture

(from the architecture or engineering courses) or to an empty slot (see Figure 4). Note that we

do not consider empty slots occurring during night hours, but only those daytime periods in

which a room is not used for a lecture. Therefore, we only consider time slots falling between 7

AM and 7 PM. Over the three weeks under study, we extracted 213 non-empty time slots (156

corresponding to architecture lectures and 57 to engineering lectures) and 101 empty time slots.

For each time slot, we extract the following features:

• Total number of connections: the total number of connections whose start time falls inside the

time slot.

• Number of unique devices: the number of unique MAC addresses that started a connection in

the time slot.

• Number of connections per device: the ratio between the total number of connections and the

number of unique MAC addresses seen in the time slot, or how many times a particular device

connected to the network in the time slot.

• Average normalised duration: the average duration of each connection, divided by the duration

of the time slot.

• Average and variance of bandwidth usage: the mean and variance of the bandwidth usage of

each connection, averaged over all the connections in the time slots. These features capture
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Fig. 4. Segmentation of network data into different time slots according to the academic calendar.

how much traffic is produced by students in a particular time slot and how variant this traffic

is on average.

• Average and variance of signal quality: the mean and variance of the signal quality experienced

by each connection, averaged over all the connections in the time slots.

• Occupancy: the ratio between the number of unique devices seen during the time slot divided

by the seating capacity of the room in which the particular AP is installed.

• Normalised occupancy: the occupancy value normalised with respect to the duration of the

time slot.

• Connection distribution sparsity and peak: for each time slot, we observe the particular

minute at which each connection is started and we build an histogram with bins spaced every

five minutes, for a total of 12 bins. We then compute the distribution sparsity and peak as

the number of empty bins and as the index of the bin with the highest connection count,
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and number of connections per device.

respectively. Such features capture the distribution of the connections starting instants. If such

a distribution is sparse, it means that many devices started a connection in the same 5 minutes

(something that typically happens during lecture breaks). If the distribution is uniform rather

than sparse, it means that students tend to start connection randomly during the time slot and

may indicate that they are not particularly “interested” or “focused” on the lecture.

Ideally, such features should be computed only for the connections started by devices who

are actually located inside a classroom where a lecture is (or is not) given. Therefore, in the

computation of the features we consider only those connections whose average signal quality

during the selected time slot is greater than the average signal quality of all possible connections

to the AP covering that classroom.

B. Rooms with classes VS. empty rooms

To analyse the differences between the behaviour of students during classes and empty slots,

we use a classification-based approach. First, we partition the dataset into a training-set (80%

of the time slots) and a test-set (the remaining 20%). The training set is used to train different

classifiers based on (i) logistic regression, (ii) Linear Discriminant Analysis (LDA) and (iii)
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TABLE I

CONFUSION MATRIX FOR THE EMPTY VS CLASS ROOM CLASSIFICATION

Predicted:

Empty

Predicted:

Class

Actual:

Empty
83.17% 16.83%

Actual:

Class
1.88% 98.12%

Quadratic Discriminant Analysis (QDA), whose performance are evaluated on the test set. The

same process is repeated 10 times, according to a stratified k-fold cross validation approach (i.e.,

maintaining the proportion of the different classes in each fold). Among the three classifiers,

QDA exhibits the best performance and only its results are shown in the following for the sake

of space.

Table I shows the performance of QDA in terms of a confusion matrix. As one can see, time

slots in which a class was given are correctly classified 98% of the time, while this accuracy

drops to 83% for empty time slots. Overall, the error rate (that is, the percentage of misclassified

time slots) of the QDA classifier is as low as 8% and its F1-score is as high as 0.87. To further

analyse what are the most discriminative features for such a classification, at each iteration of

the k-fold validation we perform forward stepwise feature selection, each time keeping track of

the top three selected features. It turns out that the three most discriminative features in this case

are the average normalised duration, the occupancy and the number of connections per device.

Figure 5 gives a visual explanation of the difference between empty and non-empty time slots:

empty time slots are characterised by a lower average occupancy (0.6 vs. 0.9), and exhibit fewer

connections per device (1.2 vs. 1.5) but with a longer normalized duration (0.6 vs. 0.3). That

means that students occupying empty rooms tend to connect once to the wireless network and

to maintain such a connection for a long time, while students attending a class connect more

frequently but for shorter periods.

C. Engineering VS. architecture classes

We repeated the same approach for identifying differences between the behaviour of students

during engineering or architecture courses. Table II shows the performance of QDA in terms

of a confusion matrix. As one can see, even in this case the performance of classification is
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very good, with architecture and engineering classes being classified correctly 97% and 85%

of the times, respectively. The overall error rate in this case is as low as 6% (F1-score equal

to 0.96), meaning that there is indeed a difference in the usage of the network by architecture

or engineering students and that the classifier is able to exploit such a difference. To better

understand what changes between the behaviour of the two types of students, we again select the

top three features obtained with stepwise forward selection, which turn out to be the occupancy,

the sparsity of the connection distribution and the average normalised duration. Figure 6 shows

the two types of classes when plotted on the planes individuated by such features. We can

observe that engineering classes have on average (i) a lower occupancy (0.6 vs 0.8), (ii) a higher

sparsity of the connection distribution (2.9 vs 1.9) and (iii) a higher normalised duration with

respect to architecture students (0.35 vs 0.2). We do not have access to the exact number of

enrolled students per class: assuming that such a number is proportional to the room capacity,

our results seem to indicate that engineering students attend classes less frequently, but with

more attention than architecture students.



15

TABLE II

CONFUSION MATRIX FOR THE ARCHITECTURE VS ENGINEERING LECTURES CLASSIFICATION

Predicted:

Architecture

Predicted:

Engineering

Actual:

Architecture
97.44% 2.56%

Actual:

Engineering
14.04% 85.96%

V. CONCLUSIONS

The analysis of WiFi traffic traces can give fundamental insights on how to optimize and

manage the network and, if coupled with other contextual information, it can also reveal patterns

on how the end users behave. This high-level semantic information may be used as a basis for

implementing future services, especially in the context of smart cities. In this work, we have

analyzed traffic logs from a campus WiFi network. First, we have presented a spatio-temporal

correlation analysis of the network under consideration. Then, we have used the traces to search

for distinctive fingerprints in the logs themselves coming from different “types” of users; namely,

we have proposed a supervised learning approach based on Quadratic Discriminant Analysis

to classify WiFi traffic coming from empty or occupied classrooms and from engineering or

architecture lectures. The proposed approach has been tested on a three-weeks WiFi data log

with promising classification performance. Future works will address the exploitation of such

results to implement high level services and applications.
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Abstract

Communications using frequency bands in the millimeter-wave range can play a key role in future

generations of mobile networks. By allowing large bandwidth allocations, high carrier frequencies will

provide high data rates to support the ever-growing capacity demand. The prevailing challenge at high

frequencies is the mitigation of large path loss and link blockage effects. Highly directional beams are

expected to overcome this challenge. In this paper, we propose a stochastic model for characterizing

beam coverage probability. The model takes into account both line-of-sight and first-order non-line-

of-sight reflections. We model the scattering environment as a stochastic process and we derive an

analytical expression of the coverage probability for any given beam. The results derived are validated

numerically and compared with simulations to assess the accuracy of the model.

I. INTRODUCTION

The ever-growing data rate demand as well as the shortage of mobile frequency resources

pose challenges for the upcoming fifth generation (5G) of mobile communications. A way to

overcome these problems is to exploit unused frequency bands such as millimeter waves (mm-

waves) between 30 to 300 GHz. Mm-waves bring new opportunities, but at the same time raise

challenges, e.g., the large path loss caused by higher frequencies dramatically reduces the cell

coverage area [1]. The use of highly directional narrow beams with high beamforming gain can

help in increasing the cell coverage distance [2], but it requires robustness in procedures such

as initial access, beam tracking, mobility management, and handovers.

The main focus of ongoing research related to mm-wave communications is the study of

propagation characteristics, channel modeling, beam forming, and medium access control design.
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Extensive research is still needed to enable mm-wave communications to be deployed in cellular

systems. To this end, we provide a beam based stochastic model for evaluating the coverage

probability for any given beam. The analytical expression derived can be then exploited for

supporting system level optimization, such as mobility management.

A. Related Works

Communications using mm-waves have been initially investigated for indoor and short range

applications, where propagation is facilitated by line-of-sight (LOS) conditions and low-mobility.

In [3], the authors propose two algorithms for beam searching, selection and tracking in wireless

local area networks. They discretize the set of beams and find, by using iterative search, the best

beam pair for the transmitter and the receiver. Similarly, the authors in [4] develop a method that

compensates link blockage by switching between the LOS link and a non line-of-sight (NLOS)

link, whenever the former is blocked. However, they do not provide any analytical model of the

beam coverage and blockage probability.

Lately, the focus has shifted towards the application of mm-waves in outdoor scenarios and

cellular systems. In [5], [6], the propagation characteristics of mm-waves are investigated. The

study in [5] collects measurements taken in New York at 28 and 38 GHz. Results show that,

when a high directional antenna array is used, path loss does not create a significant impediment

to the propagation and it is still possible to reach the typical cell coverage of a high density

urban environment. Based on the measurements reported in [5], [6] derives a statistical channel

model for the path loss, the number of spatial clusters, the angular dispersion, and the outage

probability.

Other works exploit stochastic geometry in order to derive statistical channel models and

analyze the performance of mm-wave cellular systems. In [7], by proposing a stochastic model for

the scattering environment, the authors compute the transmitter-receiver link blockage probability

and the probability of coverage both for low frequency and mm-wave cellular networks. However,

reflections are ignored. In [8], the authors propose an approach based on random shape theory

to provide a statistical characterization of the mm-wave channel and to compute the power

delay profile. The model takes into account both the LOS link and all the first-order reflections.

Differently from our work, it considers omnidirectional antennas, at both the receiver and the

transmitter, and it does not consider any beamforming approach. Leveraging the results in [7], a

stochastic approach is adopted also in [9] to provide an analysis of the cell coverage probability
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(a) (b) (c)

Fig. 1: (a) The BS and a subset of the beams that can be formed, indicated with different color shades. (b) Beam

Bj covers directly the user u, whereas beam Bh covers the user u by the reflection Br
h. (c) A mm-wave cell in an

outdoor urban scenario with randomly deployed buildings.

and capacity. The authors demonstrate that, in high cell density conditions, mm-wave networks

are able to provide sufficient signal-to-interference-plus-noise ratio (SINR) coverage and higher

rate than the low-frequency cellular networks. Compared to previous works, they incorporate

a directional beamforming for the SINR computation, at both the base station and the mobile

user. However, in this case, reflections are ignored. The same assumption is done in [10], where

the authors analyze the impact on the media access control layer design of highly directional

communications for mm-waves. Using random shape theory, they investigate initial access and

interference management, discussing handover and mobility issues.

B. Our Contributions

In this paper, we propose a beam based model that allows the analysis of the coverage

probability and provides a useful tool to accurately investigate the effects of user mobility and

beam selection in mm-wave cellular systems.

The main novelty, with respect to the state of the art, lies in the coupling of the following

two aspects.

• The model incorporates beamforming, hence it allows to evaluate the coverage probability

for any given beam, by taking into account the beam features (i.e., orientation and width)

as well as the transmitter-receiver position.
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• The model evaluates the coverage probability not only considering the direct beam but also

including first-order reflections, which fairly contribute to the coverage probability in NLOS

conditions [5].

The rest of the paper is structured as follows. Section II describes the system model and

the assumptions. In Section III, we derive the beam coverage probability when blockages and

first-order reflections are taken into account. In Section IV, we present a numerical evaluation

to validate the accuracy of the model proposed. Section V concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We target the analysis of beam coverage probability in a cellular scenario. For any cell and

user position of interest, the analysis deals with the coverage probability of any given beam. To

this end, we consider a cell using mm-wave frequency bands for radio access. The base station

(BS) is in the center of the cell and is equipped with a linear array of antennas that can form a

discrete set of beams M of cardinality |M|. Each beam Bj , j ∈ M, is defined using a sector

model and is fully specified by its direction θj and width µj , as shown in Fig. 1a. Furthermore,

we assume the beamforming gain Gj to be a function of the beam width, i.e., Gj = G(µj). The

generic user u is fully characterized by its position with respect to the BS, i.e., (θu, du), which

is given in polar coordinates as shown in Fig. 1a, and is equipped with an omni-directional

antenna.

In order to compute the beam coverage probability, we evaluate the signal-to-noise ratio (SNR)

received by the generic user u from the BS, when a certain beam is used to transmit. Namely,

in our model, we assume that the SNR depends on the distance du, the carrier frequency f ,

and the blockage effects caused by the scattering environment. Moreover, we evaluate the SNR

considering either the LOS link or a first-order reflection, while excluding the contributions given

by links with two or more reflections. This is motivated by the fact that beams reflected more

than once arrive at the receiver with a very high path loss (caused by the longer path and a

larger reflection loss) and therefore we assume their contributions to the SNR to be negligible.

In particular, a first-order reflection Br
j is generated when the beam Bj hits a building, as shown

in Fig. 1b. We assume that beams are narrow enough to be totally reflected and we ignore

diffraction and refraction effects. As a result, the beam Bj can cover the user either directly or

by its first-order reflection Br
j . In order to model the scattering environment, as shown in Fig. 1c,

we consider buildings with rectangular shape. A building is specified by its center z, length l,
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TABLE I: Summary of the notation

Bj jth beam

(µj , θj) Width and orientation of Bj

Aj Sector covered by Bj

Brj Reflected beam generated by Bj

(θu, du) Polar coordinates of u

(θvu, d
v
u) Polar coordinates of virtual user u

dr Distance between the BS and the obstacle along θh

dvr Distance between the BS and the obstacle along θvu

dru Distance between the obstacle and u

SNRBju SNR for user u and beam Bj

SNRDBju
SNR for user u and direct beam Bj

SNRRBju
SNR for user u and reflected beam Brj

L, W , Φ Length, width and orientation of an obstacle

width w and orientation φ. We assume all these to be independent random variables. Namely, the

centers of the buildings Z form a homogeneous Poisson point process (PPP) of density λ. The

lengths L and the widths W have probability density function fL(l) and fW (w), respectively.

The orientations Φ are assumed to be uniformly distributed between [0, π]. A summary of the

notation is reported in Table I.

III. BEAM COVERAGE PROBABILITY

In this section, we compute the beam coverage probability of beam Bj , by explicitly consider-

ing the dependency between this probability and the beam properties (i.e., orientation and width)

as well as the position of the user. We define the event Cju := SNRBju ≥ Γ, where SNRBju is

the SNR received by the user u for beam Bj and Γ is a given threshold. Formally, we define

the coverage probability of beam Bj and the user u, i.e., P (Cju), as:

P (Cju) = P (SNRBju ≥ Γ). (1)

In order to compute the SNR received by the user at the position (θu, du), we distinguish

between two cases: the beam Bj covers the user directly or by a reflected beam Br
j . Given the
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assumption that a beam is either not reflected or totally reflected by a building, we consider those

two events to be mutually exclusive, i.e., the probability that the same beam covers simultaneously

the user both directly and with a reflection is set equal to zero. A beam Bj can cover the user

directly if and only if the user u is inside the sector Aj , which is defined by the direction θj

and the width µj as:

Aj =
{

(θ, d) ∈ [0, 2π]× [0,∞] : |θ − θj| ≤
µj
2

}
. (2)

Therefore, we define the event Dju := (θu, du) ∈ Aj and we denote its complementary event

as Dju. Thus, according to the law of total probability, P (Cju) can be written as:

P (Cju) = P (Cju ∩ Dju) + P (Cju ∩ Dju) =

P (Cju|Dju)P (Dju) + P (Cju|Dju)P (Dju), (3)

where the first term of the sum represents the probability that the user is covered directly by the

beam, while the second term is the probability to be covered by a reflection.

The first and the second addend of (3) are explicitly derived in Section III-A and in Sec-

tion III-B, respectively.

A. Direct Beam Coverage Probability

The first term of (3) represents the probability of coverage with direct beam. According to

the definition of Dju, we can write the probability P (Dju) as:

P (Dju) =

1 ∀ (θu, du) ∈ Aj

0 otherwise.
(4)

Note that the event Dju takes into account only whether the user lies in Aj (or not). In order

to incorporate the blockage effect of obstacles, we define LOSu (NLOSu) as the event in which

the user u is in LOS (NLOS) with respect to the BS. To compute the probability of LOSu, we

use one of the results derived in [7]. Namely, the authors show that (for the very same scattering

model adopted here) the number of obstacles between the BS and the user is a random variable

O that follows a Poisson distribution with mean:

E[O] = βdu + p, (5)
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where β = [2λ(E[L]+E[W ])]/π, p = λE[L]E[W ] and E[X] indicates the mean of the random

variable X . Therefore, the probability that the user is in LOS can be written as follows:

P (LOSu) = P (O = 0) = e−(βdu+p). (6)

Note that the two events Dju and LOSu are independent since the former depends only on

θu and θj whereas the latter depends only on du. Furthermore, since LOSu and NLOSu are

complementary events, the first term of (3) can be rewritten as follows:

P (Cju ∩ Dju) =

P (Cju|Dju ∩ LOSu)P (Dju)P (LOSu)+

P (Cju|Dju ∩ NLOSu)P (Dju) (1− P (LOSu)) . (7)

Moreover, by assumption, refraction is not considered in our model and a signal is completely

reflected by an obstacle, hence P (Cju|Dju ∩ NLOSu) = 0.

Let {SNRBju|(Dju ∩ LOSu)} be the received SNR when user u is directly covered by beam

Bj in LOS, which we indicate for the rest of the paper as SNRD
Bju

. By applying the Friis’ law

we can write:

SNRD
Bju

=
PtGjGuc

2

(4πduf)2PN
, (8)

where Pt is the transmit power, c is the speed of light, Gu is the user beamforming gain, f is

the frequency and PN is the noise power.

To compute the coverage probability, we consider the case in which the SNR is greater than

the given threshold Γ. Thus, let us define d0 as the distance for which SNRD
Bju

= Γ; with d0 and

Aj defining the beam coverage area as shown in Fig. 1a. Let 1X (x) be the indicator function,

i.e., 1X (x) = 1 ∀x ∈ X . We can then write the direct beam coverage probability as:

P (Cju ∩ Dju) = P (SNRD
Bju
≥ Γ)P (Dju)P (LOSu) =

1
[θj−

µj
2
,θj+

µj
2

]×[0,d0]
(θu, du)e

−(βdu+p). (9)

B. Reflected Beam Coverage Probability

We now investigate the probability of being covered by a first-order reflection. In general, Bj

can generate different reflections, which depend on the position and orientation of the building
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that is hit by the beam. In order to compute them, we assume the specular reflection law, i.e.,

the incident angle is assumed to be equal to the reflected one. Moreover, given the narrow

beam assumption, we consider only the case in which the entire beam hits only one side of an

obstacle (see Fig. 1b). Furthermore, the side of the building that is hit by the beam generates a

straight line that divides the space in two half-planes, as shown in Fig. 1b. Thus, we compute

the symmetric point (θvu, d
v
u) of the user position with respect to this line, which we call virtual

user position.

The user u is covered by a first-order reflected beam if the two events Rju and LOSRu jointly

hold, where Rju := {θvu ∈ Aj} ∩ {dvu ≥ dvr} and LOSRu is the event in which the user u is in

LOS with respect to the obstacle. Note that dvr is the distance between the BS and the obstacle

along the direction identified by θvu, as shown in Fig. 1b. By considering that the events Dju, Rju

and LOSRu are independent, we can write

P (Cju|Dju) = P (SNRR
Bju
≥ Γ)P (Rju)P (LOSRu ), (10)

where SNRR
Bju

is the received SNR when beam Bj is reflected once by an obstacle. By applying

the Friis’ formula, we obtain

SNRR
Bju

=
PtG

r
jGuc

2

(4πdvuf)2σPN
, (11)

where the beamforming gain of the reflected beam is Gr
j = Gj and σ is the reflection loss. Thus,

we can derive the distance for which SNRR
Bju

= Γ as dv0 = d0
σ

.

The events {SNRR
Bju
≥ Γ}, Rju, and LOSRu and their respective probabilities depend on, e.g.,

dvu, θvu, and dru (which is the distance between the user and the obstacle). Those in turn depends

on the beam properties and the user position, which are both given, and on the distance of the first

obstacle from the BS, dr, and its orientation φ, see Fig. 1b. According to the stochastic model

adopted for the scattering environment, those variables are described by probability density

functions fDr(dr) and fΦ(φ), respectively. The latter is assumed to be uniformly distributed

between [0, π], whereas

fDr(dr) =

δ(dr)
(
1− e−p

)
+ (1− δ(dr)) βe−(βdr+p)U(dr), (12)

where δ(r) is the Dirac delta function, i.e., δ(r) = 1 for r = 0 and 0 otherwise, and U(r) is the

Heaviside step function. The details of the computation can be found in Appendix A.
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P (Cju ∩ Dju) = (1− P (Dju))×
∫ π

o

∫ ∞
0

1
[θj−

µj
2
,θj+

µj
2

]×[dvr ,
d0
σ

]
(θvu(r, α), dvu(r, α))P (LOSRu |r, α)(

δ(r)
(
1− e−p

)
+ (1− δ(r)) βe−(βr+p)U(r)

) 1

π
dr dα

(13)

To derive the final expression of the reflected beam coverage probability, reported in (13),

we condition all terms of (10) on Dr and Φ. The product of the first two (conditioned) terms

of (10) leads to the indicator function in (13), whereas the P (LOSRu |Dr = dr,Φ = φ) is shown

in Appendix B.

IV. NUMERICAL EVALUATION

In this section, we present the results of our study on the beam coverage probability. We assess

the validity of our model by comparing the numerical results for P (Cju), computed using the

analytical model, with simulation results. We used Matlab to compute numerically (13), hence (3),

as well as to obtain the simulations results. It is important to note that in the simulation setup, we

remove the assumption that a beam can hit only one side of an obstacle and we allow the beam

to hit several obstacles (and sides), hence generating several reflections. Clearly, this makes the

simulation environment more realistic, but also leads to some gap between the model and the

simulation results, as shown later.

A. Simulation Setup

We consider a simulation area of 500 × 500 m2 and we place the base station in the centre

of the area. We independently generate 10, 000 instances by dropping the buildings randomly,

according to a PPP of density λ. In order to obtain a comprehensive performance evaluation,

hereafter, we vary several parameters, such as beam width and orientation, building density, and

position of the user. The parameters that are fixed are: Pt = 30 dBm (as the experiments in [6]),

PN = −85 dBm, f = 30 GHz, and Γ = 1, i.e., 0 dB. W and L are characterized by uniform

distribution between [30, 50] and [40, 60] (in meters), respectively. The reflection loss, which

depends on several factors, e.g., angle of incidence on the obstacle, frequency, materials of the

wall, is set to σ = 3 dB (as proposed in [8]), which means that half of the power is lost when

the beam hits a building. Moreover, the results consider two different beam widths: µij = 10◦
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Fig. 2: The beam coverage probability computed for different non-overlapping beams with width µj = 10◦.

and µij = 30◦. Since the gain depends on the beam width itself, we set G(10◦) = 36 dBi and

G(30◦) = 12 dBi, which are assumed constant inside Aj and equal to 0 elsewhere. Moreover,

we assume that Gu = 1 dBi.

B. Results

Fig. 2 shows the beam coverage probability when varying the beam orientation θj . The user

position is (90◦, 50 m), the building density is λ = 0.0002 buildings/m2, and the beam width is

µj = 10◦. First, we observe that analytical and simulation results are very close to each other,

validating the proposed model. Furthermore, we see that P (Cju) decreases as the difference

between the angular coordinate of the user, θu, and the beam direction, θj , increases. In particular,

the coverage probability of the direct beam (θj = 90◦) is much larger than the ones obtained

from reflected beams. Namely, when the beam direction moves away from the user angular

coordinate, the path between the user and the obstacle becomes longer. Consequently, both the

received SNR and the probability that the user is in LOS with respect to that obstacle decrease.

Similar results have been obtained for different beam widths, but they are not reported for the

sake of space.

Although the contribution to the coverage probability of the non-direct beams is smaller

compared to the direct one, the aggregation of all of them can have a significant impact on the
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Fig. 3: Comparison between the cell coverage probability when considering only the direct beam and when including

all possible reflected beams.

cell coverage probability. In Fig. 3, we compare the simulated cell coverage probability when

only the direct beam is considered and when reflections are also included. Namely, in the latter

case, the cell coverage probability is defined as the probability that at least one beam covers

the user. We use the same parameters of Fig. 2, but we vary the user distance du. We observe

that the cell coverage probability of the direct beam decreases faster in comparison to that with

reflected beams. Moreover, the contribution of the reflections become more evident as the user

distance increases. Similar conclusions can be drawn from Fig. 4, in which we show the beam

coverage probability, varying the user distance du, for the direct beam and two reflected beams,

when λ = 0.0002 buildings/m2. In this case, the angular coordinate of the user is θu = 90◦

and the direct beam is the one with orientation θj = θu. Furthermore, we select two reflected

beams: a first beam with θj = 95◦ and µj = 10◦, and a second beam with θj = 105◦ and

µj = 30◦. In both cases, the reflected beam is chosen such that the user is placed at the border

of the beam coverage angle, which corresponds to the best non-direct beam (in terms of beam

coverage probability). We observe that the direct beam coverage probability decreases rapidly as

du increases, whereas the reflected beam coverage probability remains almost constant. Fig. 4

further validates our model, reported with solid lines, with respect to simulations results, reported
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with dashed lines. In particular, the divergence between model and simulation results, for the

reflected beam curves, increases with du. This is due to the assumption (made in the analytical

model, but not in the simulation setup) that the reflected beam hits only one side of the same

building and is totally reflected, proving that our model is more accurate for narrow beams.

The validity of the model is shown also in Fig. 5, where we compare the beam coverage

probability when the building density λ increases, for a fixed user position (90◦, 50 m) and the

same beam set assumed in Fig. 4. In general, we observe that the analytical model matches

well the simulation results. Moreover, the coverage probability of the direct beam decreases

as the density λ increases, whereas the coverage probability of the reflected beams has a non-

monotonic behavior. Namely, it increases from zero (when there are no buildings, hence no

reflections) reaching a maximum for a given building density, and then decreases again. This

behaviour is due to twofold effect that the building density has on the reflections. On one

hand, increasing the building density corresponds to increasing the possibilities of generating

reflections, which enhances the beam coverage probability. On the other hand, increasing the

building density reduces the probability of LOS between the position of the first obstacle and

the user, which decreases the beam coverage probability.

Finally, both Fig. 4 and Fig. 5 show that, by increasing the beam width, we can enhance the

coverage probability of reflected beams (i.e., when there are NLOS conditions). This is due to the

fact that the reflection of wider beams can cover a larger area and thus increase the probability

of covering the user. This is an important outcome of our analysis, which suggests that width

should be trade off between narrow beams, which are very good in LOS conditions, and wider

beams, which can provide good coverage probability in NLOS conditions.

V. CONCLUSION

In this paper, we propose a beam based stochastic model for evaluating the beam coverage

probability in mm-wave cellular systems. We model the scattering environment as a stochastic

process and we derive an analytical expression valid for any given beam with respect to a given

user position. The proposed model is able to capture the dependency of the beam coverage

probability on various parameters, such as user position, beam orientation and width, and building

density.

In general, the analytical model matches well the simulation results, especially for narrow

beams. Furthermore, we show that, although the highest coverage probability is provided by
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Fig. 4: Comparison between the analytical model (solid line) and simulation results (dashed line) of the direct and

reflected beam coverage probability with varying user distance du.

the direct beam, reflections can fairly contribute to it, especially for larger user distances, i.e.,

when the LOS probability dramatically decreases. Moreover, the results show a non-monotonic

behaviour of the reflected beam coverage probability with respect to the building density, which

suggests that an optimal building density exists for NLOS conditions. Finally, we observe that

increasing the beam width is a good strategy to improve the beam coverage probability in

NLOS conditions.

Future work will further investigate the coverage properties due to reflections, and extend

the model to improve the accuracy for wider beams. Furthermore, we will investigate how the

proposed model can be used for network optimization, e.g., mobility management, in mm-wave

systems.

VI. APPENDIX A

Hereafter, we derive the probability density function (PDF) of the distance of the first obstacle

from the base station along a given direction, i.e., fDr(dr). Recall that the distribution of the

total number of obstacles along a particular segment of distance dr is a Poisson random variable
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Fig. 5: Comparison between the analytical model (solid line) and simulation results (dashed line) of the direct and

reflected beam coverage probability with varying building density λ.

O with mean defined in (5), cf. [7]. Therefore, the cumulative density function (CDF) FDr(dr)

can be written as

FDr(dr) = P (Dr ≤ dr) = 1− P (Dr ≥ dr) =

1− P (O(dr) = 0) = 1− e−(βdr+p). (14)

Since the CDF is equal to 0 for dr < 0, it has a discontinuity in zero caused by the non-zero

dimension of the obstacles. Therefore, to compute the PDF fDr(dr) we separate the two cases,

i.e., dr = 0 and dr > 0. Then we obtain

fDr(dr) =

1− P (O(0) = 0) = 1− e−p dr = 0

dFDr (dr)

ddr
= βe−(βdr+p) dr > 0.

(15)

VII. APPENDIX B

One can easily see that the event LOSRu is strongly correlated to the distance, dr, between the

BS and the first obstacle. For the sake of space we skip the details and we directly report the
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derived approximation of P (LOSRu |Dr = dr,Φ = φ), which is

P (LOSRu |Dr = dr,Φ = φ) = 
min(1, e−βdru+q) 0 ≤ ψ ≤ π

2
, dr ≥ dru

min(e−β(dru−dr), e−βdru+q) 0 ≤ ψ ≤ π
2
, dr ≤ dru

e−βdru π
2
≤ ψ ≤ π

(16)

where dru is the distance between the user and the obstacle, q = λ cot(ψ)(E[L2] + E[W 2])/2

and ψ is the angle formed by the reflection and directly depends on φ, as shown in Fig. 1b.

E[L2], and E[W 2] are the second moments of the length and width of the obstacles, respectively.
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